issue with solving system of odes in matlab
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Wajahat
am 5 Okt. 2017
Kommentiert: Walter Roberson
am 24 Jan. 2018
syms l g t A omg k
syms f1(x) f2(x)
S = dsolve(diff(f1) == l*f1 + sqrt(g)*A*exp(i*omg*t-i*k*x)*f2, diff(f2) == -sqrt(g)*A*exp(-i*omg*t+i*k*x)*f1 -l*f2)
S.f1
S.f2
matlab shows error when i solve the above mentioned ode in matlab, is there anyone who can guide me to remove the error.
0 Kommentare
Akzeptierte Antwort
Walter Roberson
am 5 Okt. 2017
Bearbeitet: Walter Roberson
am 24 Jan. 2018
MATLAB is not powerful enough to solve that analytically. Maple says that the solution is
f1(x) = -(1/2)*exp(1i*omg*t)*(C2*(1i*k-(-k^2-4*A^2*g+(4i)*k*l+4*l^2)^(1/2)+2*l)*exp((1/2)*(1i*k-(-k^2-4*A^2*g+(4i)*k*l+4*l^2)^(1/2))*x)+C1*exp((1/2)*(1i*k+(-k^2-4*A^2*g+(4i)*k*l+4*l^2)^(1/2))*x)*(1i*k+(-k^2-4*A^2*g+(4i)*k*l+4*l^2)^(1/2)+2*l))/(g^(1/2)*exp(i*k*x)*A)
f2(x) = C1*exp((1/2)*(1i*k+(-k^2-4*A^2*g+(4*1i)*k*l+4*l^2)^(1/2))*x)+C2*exp((1/2)*(1i*k-(-k^2-4*A^2*g+(4*1i)*k*l+4*l^2)^(1/2))*x)
Here, C1 and C2 are arbitrary constants of integration that depend upon the boundary conditions.
2 Kommentare
Walter Roberson
am 24 Jan. 2018
simplify( dsolve([diff(f1(x), x) = l*f1(x)+A*g^(1/2)*exp(-I*k*x+I*omg*t)*f2(x), diff(f2(x), x) = -l*f2(x)-A*g^(1/2)*exp(I*k*x-I*omg*t)*f1(x)]), size)
This is Maple code, not MATLAB code.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!