Filter löschen
Filter löschen

issue with solving system of odes in matlab

1 Ansicht (letzte 30 Tage)
Wajahat am 5 Okt. 2017
Kommentiert: Walter Roberson am 24 Jan. 2018
syms l g t A omg k
syms f1(x) f2(x)
S = dsolve(diff(f1) == l*f1 + sqrt(g)*A*exp(i*omg*t-i*k*x)*f2, diff(f2) == -sqrt(g)*A*exp(-i*omg*t+i*k*x)*f1 -l*f2)
matlab shows error when i solve the above mentioned ode in matlab, is there anyone who can guide me to remove the error.

Akzeptierte Antwort

Walter Roberson
Walter Roberson am 5 Okt. 2017
Bearbeitet: Walter Roberson am 24 Jan. 2018
MATLAB is not powerful enough to solve that analytically. Maple says that the solution is
f1(x) = -(1/2)*exp(1i*omg*t)*(C2*(1i*k-(-k^2-4*A^2*g+(4i)*k*l+4*l^2)^(1/2)+2*l)*exp((1/2)*(1i*k-(-k^2-4*A^2*g+(4i)*k*l+4*l^2)^(1/2))*x)+C1*exp((1/2)*(1i*k+(-k^2-4*A^2*g+(4i)*k*l+4*l^2)^(1/2))*x)*(1i*k+(-k^2-4*A^2*g+(4i)*k*l+4*l^2)^(1/2)+2*l))/(g^(1/2)*exp(i*k*x)*A)
f2(x) = C1*exp((1/2)*(1i*k+(-k^2-4*A^2*g+(4*1i)*k*l+4*l^2)^(1/2))*x)+C2*exp((1/2)*(1i*k-(-k^2-4*A^2*g+(4*1i)*k*l+4*l^2)^(1/2))*x)
Here, C1 and C2 are arbitrary constants of integration that depend upon the boundary conditions.
  2 Kommentare
Wajahat am 23 Jan. 2018
@Roberson, can you provide me the code of the above solution
Walter Roberson
Walter Roberson am 24 Jan. 2018
simplify( dsolve([diff(f1(x), x) = l*f1(x)+A*g^(1/2)*exp(-I*k*x+I*omg*t)*f2(x), diff(f2(x), x) = -l*f2(x)-A*g^(1/2)*exp(I*k*x-I*omg*t)*f1(x)]), size)
This is Maple code, not MATLAB code.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)


Mehr zu Mathematics finden Sie in Help Center und File Exchange


Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by