2nd order numerical differential equation system solving
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi!
Could you guys please help me with the following 2nd order equation system?
- G=6.673*10^-11;
- m1=1; m2=2; m3=3;
- syms x1(t) x2(t) x3(t);
- syms y1(t) y2(t) y3(t);
- syms u1(t) u2(t) u3(t);
- syms v1(t) v2(t) v3(t);
- %Körper 1/Mass1
- ode1 = u1==diff(x1,t);
- ode2 = v1==diff(y1,t);
- ode3 = diff(u1,t)*m1==((G*m1*m2)/((x2-x1)^2+(y2-y1)^2)^(3/2))*(x2-x1)+((G*m1*m3)/((x3-x1)^2+(y3-y1)^2)^(3/2))*(x3-x1);
- ode4 = diff(v1,t)*m1==((G*m1*m2)/((x2-x1)^2+(y2-y1)^2)^(3/2))*(y2-y1)+((G*m1*m3)/((x3-x1)^2+(y3-y1)^2)^(3/2))*(y3-y1);
- %Körper 2/Mass2
- ode5 = u2==diff(x2,t);
- ode6 = v2==diff(y2,t);
- ode7 = diff(u2,t)*m2==((G*m2*m3)/((x3-x2)^2+(y3-y2)^2)^(3/2))*(x3-x2)+((G*m1*m2)/((x1-x2)^2+(y1-y2)^2)^(3/2))*(x1-x2);
- ode8 = diff(v2,t)*m2==((G*m2*m3)/((x3-x2)^2+(y3-y2)^2)^(3/2))*(y3-y2)+((G*m1*m2)/((x1-x2)^2+(y1-y2)^2)^(3/2))*(y1-y2);
- %Körper 3/Mass3
- ode9 = u3==diff(x3,t);
- ode10 = v3==diff(y3,t);
- ode11 = diff(u3,t)*m3==((G*m3*m1)/((x1-x3)^2+(y1-y3)^2)^(3/2))*(x1-x3)+((G*m3*m2)/((x2-x3)^2+(y2-y3)^2)^(3/2))*(x2-x3);
- ode12 = diff(v3,t)*m3==((G*m3*m1)/((x1-x3)^2+(y1-y3)^2)^(3/2))*(y1-y3)+((G*m3*m2)/((x2-x3)^2+(y2-y3)^2)^(3/2))*(y2-y3);
- cond1 = x1(0) == 0;
- cond2 = x2(0) == 1;
- cond3 = x3(0) == 2;
- cond4 = y1(0) == 5;
- cond5 = y2(0) == 4;
- cond6 = y3(0) == 3;
- cond7 = u1(0) == 1;
- cond8 = u2(0) == 1;
- cond9 = u3(0) == 1;
- cond10 = v1(0) == 1;
- cond11 = v2(0) == 1;
- cond12 = v3(0) == 1;
- conds = [cond1; cond2; cond3; cond4; cond5; cond6; cond7; cond8; cond9; cond10; cond11; cond12];
- odes = [ode1; ode2; ode3; ode4; ode5; ode6; ode7; ode8; ode9; ode10; ode11; ode12];
I tried to solve it with dsolve. How could it be solved with ode45? Thanks in advance!
0 Kommentare
Akzeptierte Antwort
Torsten
am 6 Okt. 2017
function main
y0=[0; 5; 1; 1; 1; 4; 1; 1; 2; 3; 1; 1];
t0=0;
tfinal=10;
[T Y] = ode45(@odesNew,[t0 tfinal],y0)
function dy = odesNew(t,y)
G=6.673*10^-11;
m1=1; m2=2; m3=3;
dy=zeros(12,1);
x1=y(1);
x2=y(2);
x3=y(3);
y1=y(4);
y2=y(5);
y3=y(6);
u1=y(7);
u2=y(8);
u3=y(9);
v1=y(10);
v2=y(11);
v3=y(12);
%Körper 1/Mass1
dy(1)=u1;
dy(4)=v1;
dy(7)=(((G*m1*m2)/((x2-x1)^2+(y2-y1)^2)^(3/2))*(x2-x1)+((G*m1*m3)/((x3-x1)^2+(y3-y1)^2)^(3/2))*(x3-x1))/m1;
dy(10)=(((G*m1*m2)/((x2-x1)^2+(y2-y1)^2)^(3/2))*(y2-y1)+((G*m1*m3)/((x3-x1)^2+(y3-y1)^2)^(3/2))*(y3-y1))/m1;
%Körper 2/Mass2
dy(2)=u2;
dy(5)=v2;
dy(8)=(((G*m2*m3)/((x3-x2)^2+(y3-y2)^2)^(3/2))*(x3-x2)+((G*m1*m2)/((x1-x2)^2+(y1-y2)^2)^(3/2))*(x1-x2))/m2;
dy(11)=(((G*m2*m3)/((x3-x2)^2+(y3-y2)^2)^(3/2))*(y3-y2)+((G*m1*m2)/((x1-x2)^2+(y1-y2)^2)^(3/2))*(y1-y2))/m2;
%Körper 3/Mass3
dy(3)=u3;
dy(6)=v3;
dy(9)=(((G*m3*m1)/((x1-x3)^2+(y1-y3)^2)^(3/2))*(x1-x3)+((G*m3*m2)/((x2-x3)^2+(y2-y3)^2)^(3/2))*(x2-x3))/m3;
dy(12)=(((G*m3*m1)/((x1-x3)^2+(y1-y3)^2)^(3/2))*(y1-y3)+((G*m3*m2)/((x2-x3)^2+(y2-y3)^2)^(3/2))*(y2-y3))/m3;
Best wishes
Torsten.
2 Kommentare
Torsten
am 11 Okt. 2017
https://de.mathworks.com/help/symbolic/solve-differential-algebraic-equations.html#bvh12tx-2
might help.
Best wishes
Torsten.
Weitere Antworten (1)
Josh Meyer
am 5 Okt. 2017
Use the Symbolic Math Toolbox function odeFunction to convert the odes variable into a function handle. Once you have that, you just need to construct a numeric vector of initial conditions y0 (similar to conds) and decide what time span to solve over. The syntax will be
[t,y] = ode45(@odesNew,[t0 tfinal],y0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!