How do I solve a second order non linear differential equation using matlab.

Asked by Patrick Guarente

Patrick Guarente (view profile)

on 25 Sep 2017
Latest activity Answered by Teja Muppirala

Teja Muppirala (view profile)

on 26 Sep 2017
I have a fluid dynamics problem and I need to derive an equation for motion.
After applying Newtons second law to the system, and replaceing all the constants with A and B. My equation looks like this.
z'' + A(z')^2 = B
With A and B both being constants.
Initial conditions being that z(0)=0, and z'(0)=0
And I need to solve for z(t).
Thank you

Show 1 older comment
Patrick Guarente

Patrick Guarente (view profile)

on 25 Sep 2017
Yes I looked at ode45 page and couldnt understand the time interval that I need to put in. Because I need to find the equation for all time. And I wasn't sure if that gave me an equation as an answer or just a plot.
James Tursa

James Tursa (view profile)

on 25 Sep 2017
"... I need to find the equation for all time ..."
Are you looking for an analytical/symbolic solution? I thought that you simply wanted a numerical solution given your initial starting values.
Patrick Guarente

Patrick Guarente (view profile)

on 25 Sep 2017
Yes the analytical solution in terms of A and B.

Products

Answer by Teja Muppirala

Teja Muppirala (view profile)

on 26 Sep 2017

syms z(t) t A B
zp = diff(z,t);
zpp = diff(z,t,2);
eqn = ( zpp + A*zp^2 == B );
cond = [z(0)==0, zp(0)==0];
zSol = dsolve(eqn,cond,'IgnoreAnalyticConstraints',true);
zSol = unique(simplify(zSol));
This gives 3 solutions:
zSol =
log((C15*sinh(A^(1/2)*B^(1/2)*(t + A*B^(1/2)*1i)))/B^(1/2))/A
log(-(C18*sinh(A^(3/2)*B*1i - A^(1/2)*B^(1/2)*t))/B^(1/2))/A
log(cosh(A^(1/2)*B^(1/2)*t))/A
The first two look weird, but are valid solutions involving complex-valued z. The 3rd solution is real, and that's probably the one that you are looking for.

Answer by James Tursa

James Tursa (view profile)

on 25 Sep 2017
Edited by James Tursa

James Tursa (view profile)

on 25 Sep 2017

Define a 2-element vector y:
y(1) = z
y(2) = z'
then solve your 2nd order ODE for the highest derivative:
z'' + A(z')^2 = B ==>
z'' = - A(z')^2 + B
then calculate the y element derivative equations, using this z derivative info:
d y(1) = d z = z' = y(2)
d y(2) = d z' = z'' = -A(z')^2 + B = -A*y(2) + B
So create a derivative function based on those two equations, using the function signature that you will find in the ode45 doc. Then call it using the outline provided in the example in the doc.
EDIT: SYMBOLIC SOLUTION
>> dsolve('D2z + A*(Dz)^2 = B')
ans =
C29 + (B^(1/2)*t)/A^(1/2)
C27 - (B^(1/2)*t)/A^(1/2)
log((exp(2*A^(3/2)*B^(1/2)*(C24 + t/A)) - 1)/(2*B^(1/2)*exp(A*(C16 + A^(1/2)*B^(1/2)*(C24 + t/A)))))/A
log((exp(2*A^(3/2)*B^(1/2)*(C20 - t/A)) - 1)/(2*B^(1/2)*exp(A*(C16 + A^(1/2)*B^(1/2)*(C20 - t/A)))))/A

Patrick Guarente

Patrick Guarente (view profile)

on 25 Sep 2017
I'm not sure where those two equations will be implemented.