Derivative in function handle
73 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
f=@(x) x + log(x);
f1=diff(f)
f2=diff(f1)
I want to assign first derivative of 'f' to 'f1', and second derivative for 'f1' to 'f2' But i have this error "Undefined function 'diff' for input arguments of type 'function_handle'". How to fix? Thanks
0 Kommentare
Antworten (2)
José-Luis
am 11 Sep. 2017
Bearbeitet: José-Luis
am 11 Sep. 2017
If you're gonna do this numerically, you need to specify an interval in which to evaluate. Note that diff doesn't really give the derivative, but I'll stick to your nomenclature.
limits = [1,10];
f = @(interval) (interval(1):interval(2)) + log(interval(1):interval(2));
f1 = diff(f(limits));
f2 = diff(f1);
You could also do it symbolically but I can't help you there because I don't have the symbolic math toolbox.
0 Kommentare
James Tursa
am 11 Sep. 2017
Bearbeitet: James Tursa
am 11 Sep. 2017
E.g., if you want function handles you could get at them with the symbolic toolbox
>> syms x
>> f = @(x) x + log(x)
f =
@(x)x+log(x)
>> f1 = eval(['@(x)' char(diff(f(x)))])
f1 =
@(x)1/x+1
>> f2 = eval(['@(x)' char(diff(f1(x)))])
f2 =
@(x)-1/x^2
If you plan on feeding vectors or matrices etc to these function handles, then you could wrap the expressions appropriately with the vectorize( ) function. E.g.,
>> f1 = eval(['@(x)' vectorize(char(diff(f(x))))])
f1 =
@(x)1./x+1
>> f2 = eval(['@(x)' vectorize(char(diff(f1(x))))])
f2 =
@(x)-1./x.^2
2 Kommentare
Walter Roberson
am 11 Sep. 2017
No need for the eval()
syms x
f = @(x) x + log(x)
f1 = matlabFunction( diff(f(x)) );
f2 = matlabFunction( diff(f1(x)) );
Siehe auch
Kategorien
Mehr zu Assumptions finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!