- X 1xnx1xN
- The input layer: imageInputLayer([1 n])
- X_noisy of dimension Nxn and finally,
- net = trainNetwork(Xnoisy, X, layers, opts);
Simple denoising autoencoder for 1D data
13 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I'm trying to set up a simple denoising autoencoder with Matlab for 1D data. As currently there is no specialised input layer for 1D data the imageInputLayer() function has to be used:
function net = DenoisingAutoencoder(data)
[N, n] = size(data);
%setting up input
X = zeros([n 1 1 N]);
for i = 1:n
for j = 1:N
X(i, 1, 1, j) = data(j,i);
end
end
% noisy X : 1/10th of elements are set to 0
Xnoisy = X;
mask1 = (mod(randi(10, size(X)), 7) ~= 0);
Xnoisy = Xnoisy .* mask1;
layers = [imageInputLayer([n 1 1]) fullyConnectedLayer(n) regressionLayer()];
opts = trainingOptions('sgdm');
net = trainNetwork(X, Xnoisy, layers, opts);
However, the code fails with this error message:
The output size [1 1 n] of the last layer doesn't match the response size [ n 1 1].
Any thoughts on how should the input / layers should be reconfigured? If the fullyConnectedLayer is left out then the code runs fine, but obviously then I'm left without the hidden layer.
1 Kommentar
Georgios Papageorgiou
am 19 Okt. 2019
I assume N is the number of data and n is you data_size. I think if you make:
it should work. Make sure at the end that your inpout of your Denoising Autoencoder is the noisy data and the desired output is your "clean" data. A similar version that I implemented in MATLAB works fine for me and the dimensions match usign the regressionLayer like this.
Antworten (0)
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!