Speed up fminbnd using vectorization
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Luca Gagliardone
am 12 Aug. 2017
Bearbeitet: Matt J
am 24 Mai 2018
I am trying to optimize this piece of code. I am using the function fminbnd on a vector, splitting the task on its single entries using a loop.
Would it be possible to speed it up vectorizing the process?
for i = 1:A
for ii= 1:B
for iii = 1:C
fun = @(x) (x * variable(i,ii,iii))^2 ;
[arg_min(i,ii,iii), min_(i,ii,iii)] = fminbnd(fun,0,2);
end
end
end
Thanks for the attention.
Sincerely
Luca
0 Kommentare
Akzeptierte Antwort
Matt J
am 12 Aug. 2017
In your example, the solution is always x=0, so a trivial vectorized solution would be
arg_min=zeros(A,B,C);
min_ = arg_min;
More generally, no, vectorization will not help in a situation like this. You could consider parallelizing the loop using PARFOR.
0 Kommentare
Weitere Antworten (2)
Nick Durkee
am 24 Mai 2018
Bearbeitet: Matt J
am 24 Mai 2018
I actually developed a solution to this problem for my research. It's available on the file exchange.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Optimization finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!