Using ode45 for high altitude balloon trajectory: need some variables to update every iteration and need to plot altitude vs time.
15 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Kellie Matthews
am 28 Jul. 2017
Bearbeitet: Torsten
am 31 Jul. 2017
I'm trying to predict the trajectory of a high altitude balloon. This is the second order ODE I am using: (mass+cb*rho*vol)*z"=g(rho*vol-mass)-.5*rho*Cd*z'*|z'|*Ca
cb, Cd, g, and mass are constants. density[rho],volume, (approximate) surface area of a circle [Ca] all change with altitude.
I used this link to help me set up my second order ODE as a function: http://www.math.purdue.edu/~shen/cs614/projects/ode45.pdf
function xp=F(t,x) %xp = x prime or x'
xp=zeros(2,1); %output must be column vector
xp(1)=x(2);
xp(2)=(g*(RhoA*vol-mass)-.5*RhoA*realCD*x(2)*abs(x(2))*Ca)/(mass+cb*RhoA*vol);
end
This is what I need for my atmospheric properties that rely on altitude:
if (z <= 11000) %Meters (Troposhpere)
temp = 15.04 - 0.00649*z;
tempK = temp + 273.15;
p = 101.29*((temp+273.1)/(288.08)).^5.256; %kPa
elseif (z > 11000 && z < 25000) %Meters (Lower Stratosphere)
temp = -56.46;
tempK = temp + 273.15;
p = 22.65*exp(1.73-0.000157*z); %kPa
else %Upper Stratosphere
temp = -131.21 + 0.00299*z;
tempK = temp + 273.15;
p = 2.488 * ((temp+273.1)/216.6).^-11.388; %kPa
end
dTempK = abs(tempK - oldTempK);
RhoA = (p/(.2869*tempK));
Wg = Mb.*(1000*p).*vol/(r.*tempK);
radius = ((3/(4*pi))*vol).^(1/3);
Ca = pi*radius.^2;
old_z = z;
[t,x]=ode45('F',[0,tf],[0,0]);
hold on
plot(t,x(:,1))
z=x(i,1);
dz = z - old_z; %this is the change in altitude from the last second
dVol = (r/(p*Mb))*(Wg*dTempK/dt)*dt + (RhoA/p)*(vol)*dz;
vol = vol + dVol;
0 Kommentare
Akzeptierte Antwort
Ari
am 28 Jul. 2017
Bearbeitet: Ari
am 28 Jul. 2017
or variables that change with time or state you should put their calculations inside the function xp. In your case, your states x seem to be [z;z']. Set z = x(1) in the beginning of the function and calculate the variable parameters before you calculate xp(2). It seems you will run into a problem trying to access the z value of the previous timestep (old_z) unless you use a persistent variable. You can try the following.
function xp = F(t,x)
persistent old_z;
z = x(1);
dz = z - old_z;
old_z = z; % set the value of old_z for next timestep
% calculate variable parameters
...
xp = zeros(2,1);
xp(1) = x(2);
xp(2) = (g*(RhoA*vol-mass)-.5*RhoA*realCD*x(2)*abs(x(2))*Ca)/(mass+cb*RhoA*vol);
end
The persisent variable will remain in memory between calls to the function.
4 Kommentare
Torsten
am 31 Jul. 2017
Bearbeitet: Torsten
am 31 Jul. 2017
I wonder why you don't solve an additional (third) ODE for "vol" together with the two ODEs for height and velocity:
dVol/dt = (r/(p*Mb))*(Wg*dTempK/dt) + (RhoA/p)*(Vol)*dz/dt ;
This way, you overcome all the problems from above.
Best wishes
Torsten.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!