How to create a layer using Neural Network like the C3 Layer of LeNet?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
the C3 Layer of LeNet-5,is not a fully connect convolutional layer. every filter of this layer only take 4~5 feature map as a input from the previous layer. how could I build this kind of layer on Matlab? Using the Neural Network ToolBox or other function?
0 Kommentare
Antworten (1)
Carl
am 25 Jul. 2017
Hi Lingjun. Using the Neural Network Toolbox, you can create a convolutional neural net, and specify the number of filters to apply at each convolutional layer. The number of filters is analogous to the number of output channels, or feature maps. The following page has a good explanation of how this fits into the overall conv net structure:
https://www.mathworks.com/help/nnet/ug/layers-of-a-convolutional-neural-network.html
And here is the documentation for the convolution2dLayer function that you can use to specify the convolutional layer and the feature maps:
https://www.mathworks.com/help/nnet/ref/convolution2dlayer.html
3 Kommentare
Carl
am 26 Jul. 2017
Thank you for the follow up, I seem to have misunderstood your original question. As of MATLAB R2017a, this feature is not supported. See the documentation here on the 'NumChannels' property:
https://www.mathworks.com/help/nnet/ref/convolution2dlayer.html#input_argument_d0e56199
It states that "this parameter is always equal to the channels of the input to this convolutional layer," meaning that any subsequent layer will be connected to all the channels (feature maps) of the previous layer.
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!