how to connect Fuzzy inference system with ANFIS
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
helloo i need your help for my case i have to build fuzzy inference system at the command line like this
[System]
Name='myfile'
Type='sugeno'
Version=2.0
NumInputs=2
NumOutputs=1
NumRules=4
AndMethod='min'
OrMethod='max'
ImpMethod='prod'
AggMethod='max'
DefuzzMethod='centroid'
[Input1]
Name='x1'
Range=[3 9]
NumMFs=2
MF1='rendah':'gbellmf',[1.2 2.5 3]
MF2='tinggi':'gbellmf',[1.2 2.5 9]
[Input2]
Name='x2'
Range=[1000 3000]
NumMFs=2
MF1='apresiasi':'gbellmf',[400 2.5 1000]
MF2='depresiasi':'gbellmf',[400 2.5 3000]
[Output1]
Name='output'
Range=[1000 3000]
NumMFs=4
MF1='line1':'linear',[0 0 0]
MF2='line2':'linear',[0 0 0]
MF3='line3':'linear',[0 0 0]
MF4='line4':'linear',[0 0 0]
[Rules]
1 0, 1 (1) : 1
2 0, 2 (1) : 1
1 1, 3 (1) : 1
2 2, 4 (1) : 1
and i want to connect them with my anfis code like this
function [c,a,R,y,yr,coef,Et] = anhfis(A,yTarget,klas, lr, mc, maxEpoch, Eps);
[a,c,U,obj_fcn] = findDevMean(A, klas)
E = 1;
epoh = 0;
[n,m] = size(A);
y = yTarget
while (epoh < maxEpoch & E>Eps),
epoh = epoh+1;
Mu = zeros(n,klas,m)
E=0;
%lapisan 1,2,3
coef = [];
for i=1 : n,
for k=1 : klas,
w1(k) = 1;
for j = 1 : m,
mf (k,j) = 1/(1+((A(i,j)-c(k,j))/a(k,j))^2);
We1(i,k,j) = w1(k)*mf(k,j);
Mu(i,k,j) = mf(k,j)
end;
if m>1,
We2(i,k) = We1(i,k,1)*We1(i,k,2);
else
We2 = We1;
end;
end;
for k=1 : klas,
We3(i,k) = We2(i,k)/sum(We2(i,:));
end;
cc=[];
for k=1 : klas,
cc = [cc We3(i,k)*A(i,:) We3(i,k)];
end;
coef = [coef; cc];
end;
%lapisan 45
youtput =[]
for i=1:n,
for k=1:klas,
for j=1:m,
We4(i,k) = ((We3(i,k)*A(i,j))*coef(i,k+0)) + coef(i,k+1)
end;
end;
for j=1:m,
youtput(i,j) = sum(We4(i,:))/A(i,j)
end;
end;
X = coef
R = rekursif_LSE(X,y)
yr = X*R
nn1 = fix(length(R)/klas)
for i =1:n,
for k=1:klas,
yt(i,k) = X(i,(k-1)*nn1+1:k*nn1)*R((k-1)*nn1+1:k*nn1)
end;
end;
%propagasierror
for i=1:n,
E5 = -2*(y(i)-yr(i))
for k=1:klas,
E4(i,k) = E5
end;
for k=1:klas,
E3(i,k) = yt(i,k)*E4(i,k)
end;
for k=1:klas,
tt=0;
for t=1:klas,
for j=1:m,
if t~=k,
tt = tt+We1(i,t,j)
end;
end;
end;
if m>2
E2(i,k)= tt/(sum(We1(i,:,1))^2)*E3(i,k)
else
E2(i,k)= tt/(sum(We1(i,:,k))^2)*E3(i,k)
end;
for t=1:klas,
if t~=k,
if m>2
E2(i,k) = E2(i,k)-(tt/(sum(We1(i,:,1))^2))*E3(i,t)
else
E2(i,k) = E2(i,k)-(tt/(sum(We1(i,:,k))^2))*E3(i,t)
end;
end;
end;
end;
for j=1:m,
for k=1:klas,
tt =1
if m>1,
for t=1:m,
if t~=j,
tt = tt*Mu(i,k,t)
end;
end;
else
tt = tt*Mu(i,k,t)
end;
E1(j,k) = tt*E2(i,k)
end;
end;
%perubahan bobot a dan c(da & dc)
for j=1:m,
for k=1:klas,
L = A(i,j)-c(j,k)
H = (1+(L/a(j,k))^2)^2
da(j,k) = 2*(L^2)/((a(j,k)^3)*H)*E1(j,k)*lr*A(i,j)
dc(j,k) = 2*L/((a(j,k)^2)*H)*E1(j,k)*lr*A(i,j)
if epoh>1,
da(j,k) = mc*dalama(j,k)+(1-mc)*da(j,k)
end;
if epoh>1,
dc(j,k) = mc*dclama(j,k)+(1-mc)*dc(j,k)
end;
a(j,k) = a(j,k)+ da(j,k)
c(j,k) = c(j,k) + dc(j,k)
dclama(j,k) = dc(j,k)
dalama(j,k) = da(j,k)
end;
end;
%hitung sse
E = E + (y(i)-yr(i))^2
chkRMSE = norm(yr(i)-y(i))/sqrt(length(yr(i)));
%mean(E) % Mean Squared Error
%RMSE = sqrt(mean(E)); % Root Mean Squared Error
end;
Et(epoh) = E
rmse(epoh) = chkRMSE
plot(1:epoh,Et);
title(['Epoh ->' int2str(epoh)]);
handles = guidata( findobj(0, 'tag', 'sse'));
Sse = num2str(Et(epoh));
set(handles.sse,'string',Sse);
handles = guidata( findobj(0, 'tag', 'rmse'));
RMSE = num2str(rmse(epoh))
set(handles.rmse,'string',RMSE);
grid
pause(0.001);
end;
hasil = [y yr y-yr]
setappdata(0,'gethasil',hasil)
myicon = imread('checklist.png');
h=msgbox('proses pembelajaran selesai','alhamdulillah','custom',myicon);
but i don't know how to connect them. thank you
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Fuzzy Logic Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!