lsqcurvefit for global fitting gives bad parameters
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello Dear Matlab-Community,
I am trying to do a Butterworth-Van Dyke (BVD) siumulation. I calculated my startparameters. Common X-values are between 1 and 3000. Common Y-values are between 1E-2 and 1E-4. I want to optimize 4 parameter (R_m, L_m, C_m, C_0) with TypicalX like [1000, 1, 1e-10, 1e-8].
My Programm is:
if true
% clear all;
% close all;
%
% Folder = 'xxx';
% FileName = [Folder 'Daten_Aktor1.xls'];
% fid = fopen(FileName, 'r');
% if fid == -1
% error('Cannot open file %s', FileName);
% end
% Data = xlsread(FileName);
% fclose(fid);
%
% t=Data(:,1) %x-values
% y=Data(:,2) %y-values
%
% %Calculated startparameters
% % R_m = 7120
% % L_m = 26.60811
% % C_m = 5.94902E-10
% % C_0 = 3.762756E-8
%
% %Borders
% lb = [6500,1,5E-11,5E-009]
% ub = [7800,100,5E-09,5E-007]
%
% x0 = [3.762756E-8,7120,26.6,5.94902E-10]
%
% Fun = @(x,xdata) abs(i*2*pi*x(1)*xdata+1./(x(2)+i*(2*pi*x(3)*xdata-1./(2*pi*x(4)*xdata))))
%
% options = optimset('TolX',1e-10,'TolFun',1e-10, 'TypicalX', [1000, 1, 1e-10, 1e-8]);
% x = lsqcurvefit(Fun,x0,t,y,lb,ub,options)
%
% hold all
% plot(t,Fun(x,t),'r', 'LineWidth',2)
% plot(t, y,'k', 'LineWidth',2)
% xlabel('Frequenz [Hz]')
% ylabel('Amplitude [a.u.]')
end
The main problem is, that the Parameter C_0 and C_m are very small. For the algorithm it seems to be not possible to optimize both parameters. For this purpose I did not optimize the value directly. I defined a the value of C_0 and C_m as fix, and changed a percentage of the calculated value, like C_calculated * x(1) = C_optimized. But still, the steptolerance seems to be to tiny. I can not change that. Do you have an idea for me. I am trying to achieve a global fit.
I hope you can help me. Best regards Henrik
1 Kommentar
Antworten (1)
Alex Sha
am 5 Nov. 2019
Bearbeitet: Alex Sha
am 5 Nov. 2019
Hi, I have just try to solve this complex fitting problem by using another math package, the result is as following, seems to be prefect:
Fun = @(x,xdata) abs(i*2*pi*x(1)*xdata+1./(x(2)+i*(2*pi*x(3)*xdata-1./(2*pi*x(4)*xdata))))
Root of Mean Square Error (RMSE): 1.55596435380165E-6
Sum of Squared Residual: 9.70831053190858E-10
Correlation Coef. (R): 0.999930645831277
R-Square: 0.999861296472554
Adjusted R-Square: 0.999860599469904
Determination Coef. (DC): 0.999861282770118
F-Statistic: 953637.344478172
Parameter Best Estimate
-------------------- -------------
x1 3.80465879533941E-8
x2 8071.77174563029
x3 15.4842218863772
x4 1.0150335453685E-9

4 Kommentare
Siehe auch
Kategorien
Mehr zu Nonlinear Optimization finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!