Null space vs eigenvectors

13 Ansichten (letzte 30 Tage)
Jeff
Jeff am 10 Jun. 2017
Kommentiert: Jeff am 10 Jun. 2017
Below is a code I ran to compare the null space & the eigenvectors of matrix A. Please correct me if I am wrong, but I thought that the eigenvectors are the same as the null space for the matrix [A-D(n,n)*I]. Unfortunately, my results do not seem to support that premise. What do I have wrong?
A=[[14 8 -19];[-40 -25 52];[-5 -4 6]];
[V,D]=eig(A);
Vnull=null(A-D(1,1)*eye(3));
Vnull=[null(A-D(1,1)*eye(3)) null(A-D(2,2)*eye(3)) null(A-D(3,3)*eye(3))];
Vchek=[V Vnull];

Akzeptierte Antwort

David Goodmanson
David Goodmanson am 10 Jun. 2017
Bearbeitet: David Goodmanson am 10 Jun. 2017
Hi Jeff, Since your eigenvalues are all distinct, what you have is basically correct. It's just that the eigenvector and the null vector don't have to be identical, merely proportional. Taking the first column of both Vnull and V and dividing element by element shows proportionality
>> V(:,1)./Vnull(:,1)
ans =
0.7071 - 0.7071i
0.7071 - 0.7071i
0.7071 - 0.7071i
and the same is true for the other two columns.
  1 Kommentar
Jeff
Jeff am 10 Jun. 2017
Thanks David, I guess I was working a bit too late. The proportionality completely escaped me, especially when you take Vnull(3,1)/V(3,1). I was expecting an output of
real(Vnull(3,1))/real(V(3,1))+imag(Vnull(3,1))/imag(V(3,1))*i
ans =
0.0000 + 1.4142i
I completely forgot how to divide complex numbers appropriately. Thanks for setting me straight!!!

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Linear Algebra finden Sie in Help Center und File Exchange

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by