How to i find the integral/derivative of a transfer function ?

32 Ansichten (letzte 30 Tage)
have a transfer function, how to get its integral?

Akzeptierte Antwort

Sebastian Castro
Sebastian Castro am 4 Jun. 2017
Bearbeitet: Sebastian Castro am 4 Jun. 2017
Are you using Control System Toolbox? Recall that the transfer function for a derivative is s and for an integrator is 1/s. So, for example:
>> G = tf(1,[1 5 10])
>> s = tf('s')
Then
>> G_deriv = G*s;
>> G_int = G*(1/s);
If you're using discrete, you can similarly do this with z = tf('z');
- Sebastian
  4 Kommentare
Karl Magro
Karl Magro am 14 Mär. 2018
So lets say you have the following trasnfer function:
(1.417s+37.83)/(s^2+1.417s+37.83)
The first derivative of it would be: (1.417s^2+37.83s)/(s^2+1.417s+37.83)
Is that correct Sebastian?
Dhanush D Shekar
Dhanush D Shekar am 26 Okt. 2020
sebastian is talkin about taking the derivative in time domain

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Drew
Drew am 15 Mär. 2025
  2 Kommentare
Walter Roberson
Walter Roberson am 15 Mär. 2025
I do not understand this answer to the question about taking integrals and derivatives of transfer functions.
For one thing, the integral involves the variable t but transfer functions tradtionally use s or z . Using the variable t makes it appear as if this is an integral in the time domain, in which case it is not a transfer function.
Walter Roberson
Walter Roberson am 15 Mär. 2025
syms t y(x)
eqn = diff(y,x) * int(sin(t^2), t, sqrt(x), sym(pi)/4)
eqn(x) = 
char(eqn)
ans = '-(2^(1/2)*pi^(1/2)*(fresnels((2^(1/2)*x^(1/2))/pi^(1/2)) - fresnels((2^(1/2)*pi^(1/2))/4))*diff(y(x), x))/2'

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Dynamic System Models finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by