Symbolic Integration: Explicit integral could not be found

3 Ansichten (letzte 30 Tage)
geeks
geeks am 1 Apr. 2012
Hi all,
I got a problem when trying to run a symbolic integration. Since lognormal distribution is not defined in the symbolic tools, I just write it out in an explicit way. The code is as follows:
syms w mu sigma positive
t = (w-6.5)*(w*sigma)^(-1)*(1/sqrt(2*pi)*exp(-(log(w)-mu)^2/sigma^2/2));
c = int(t,w,6.5,inf);
And the error msg is:
Warning: Explicit integral could not be found.
Can anybody please give some hint how to get the integration?
Thanks very much!!
Sonia
  1 Kommentar
David
David am 22 Okt. 2012
Sonia, I had a similar problem and your post really help me, but I do not understand your formula:
(w-6.5).*(w*sigma).^(-1).*(1/sqrt(2*pi)*exp(-(log(w)-mu).^2/sigma^2/2));
could it be: (w-6.5).*(sigma).^(-1).*(1/sqrt(2*pi)*exp(-(log(w)-mu).^2/sigma^2/2));
Is this ok?

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Andrei Bobrov
Andrei Bobrov am 1 Apr. 2012
try numeric solution
eg
sigma = .2;
mu = 2;
t = @(w)(w-6.5).*(w*sigma).^(-1).*(1/sqrt(2*pi)*exp(-(log(w)-mu).^2/sigma^2/2));
c = quadgk(t,6.5,inf)
ADD on Geeks comment
use function c
t = @(w,mu,sigma)(w-6.5).*(w*sigma).^(-1).*(1/sqrt(2*pi)*exp(-(log(w)-mu).^2/sigma^2/2));
c = @(mu,sigma)quadgk(@(w)t(w,mu,sigma),6.5,inf)
  4 Kommentare
Yingying
Yingying am 23 Apr. 2012
Can you explain the function C in more detail? I am having the similar problem now, The code is as follows:
>> syms a b y
>> a1=int('1/(a*y^3+b)',y,0,5)
And the msg is:
Warning: Explicit integral could not be found.
a1 =
piecewise([a <> 0 and b = 1 and abs(arg(a)) < pi, 5*hypergeom([1/3, 1], [4/3], (-125)*a)], [Otherwise, int(1/(a*y^3 + b), y = 0..5)])
Walter Roberson
Walter Roberson am 23 Apr. 2012
Yingying, for you the easiest solution might be to add assumptions. For example if you know that a > 0 then
syms a positive
syms b y
a1 = int(1/(a*y^3+b), y, 0, 5);
Notice here that I did not quote the expression to be integrated; otherwise the "positive" assumption on "a" would not have any effect.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Walter Roberson
Walter Roberson am 1 Apr. 2012
limit(-(1/2)*exp(mu+(1/2)*sigma^2)*erf((1/2)*2^(1/2)*(sigma^2-U+mu)/sigma)+(13/4)*erf((1/2)*2^(1/2)*(-U+mu)/sigma)+(1/2)*exp(mu+(1/2)*sigma^2)*erf((1/2)*2^(1/2)*(-ln(13/2)+mu+sigma^2)/sigma)+(13/4)*erf((1/2)*2^(1/2)*(ln(13/2)-mu)/sigma), U = infinity)
Note, in this expression, U is an introduced variable for the purpose of the limit()

Kategorien

Mehr zu Programming finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by