plotting phase diagram of a strange attracter
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
myetceteramail myetceteramail
am 23 Mai 2017
Bearbeitet: myetceteramail myetceteramail
am 24 Mai 2017
i have a set of first order nonlinear differential equation called the chen's system of ode. i have numerically calculated the solution x(t),y(t),z(t) in terms of a polynomial approximation of the solution. my solution is a polynomial each of x(t),y(t),z(t) with degree 71. Now how do i draw the phase diagram here is what i have done
x=zeros(1,72);
x(1)= -0.1;
y=zeros(1,72);
y(1)= 0.5;
z=zeros(1,72);
z(1)=-0.6;
for k=0:70
x(k+2)=35*(gamma(1+k)/gamma(2+k))*(y(k+1)-x(k+1));
sum=0;
for l=1:k+1
sum=sum+(x(l)*z(k+2-l));
end
y(k+2)=(gamma(1+(k))/gamma(2+(k)))*(-8*x(k+1)-sum+27*y(k+1));
sum=0;
for l=1:k+1
sum=sum+(x(l)*y(k+2-l));
end
z(k+2)=(gamma(1+k)/gamma(2+k))*(-3*z(k+1)+sum);
end
These x(k's) are my coeffecients for my polynomials. after this when i plot for example x(t) i do it like this
s=fliplr(x);
t=0:0.05:250;
v=polyval(s,t);
plot(v).
please somebody help
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Polynomials finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!