How to create two graph plots in one, plus scale aside?

1 Ansicht (letzte 30 Tage)
cbentter
cbentter am 4 Mai 2017
Bearbeitet: cbentter am 13 Mai 2017
How to do this figure in MatLab?
Partial code:
M = 256; sigma = 6.0;
h = sin(+2*pi*sigma*log((1-([0:M-1]/M))-0.2));
h(1:37) = 0; h(193:M) = 0;
H= [fft(h) fft(h) fft(h)];
k = ([0:floor(M/2)-1 -floor(M/2):-1]);
S(1,:)=sum(ifft(H(1:M)))/M*ones(1,M);
for n=1:floor(M/2)-1;
W=(1./M)*exp(-n^2*k.^2/(2*M^2))...
.*exp(-2*pi*i*(n*k/M-sign(n) ...
*sigma*log(sigma+abs(n)*k/M)));
W(M/2+1:M-ceil(sigma*M/abs(n))+1)=0;
W = W/sum(W);
S(n+1,:) = ifft(H(n+M+1:n+M+M).* fft(W));
end
figure(10), contour(abs(S),'ShowText','off');
colorbar
Source code and picture, article DOI: 10.1016/j.sigpro.2004.03.015
Title: "Time-local Fourier analysis with a scalable, phase-modulated analyzing function: the S-transform with a complex window"

Akzeptierte Antwort

Santhana Raj
Santhana Raj am 4 Mai 2017
The trick is to use position property in subplot.
figure, subplot('position',[0.1 0.3 0.8 0.7]),contour(abs(S),'ShowText','off');xlim([0 M]);
subplot('position',[0.1 0.1 0.8 0.1]),plot(1:M,h),xlim([0 M]);
you can modify the parameters of position vector to get the exact to what you want.

Weitere Antworten (1)

cbentter
cbentter am 4 Mai 2017
Similar figure and complete soluction basead on 'Santhana Raj' answer
len = 512;
t(1:len) = [0:0.25:127.75];
h(1:128) = 0;
% h = zeros(1,512);
h(129:512) = exp(-4*[0:383]/256).*sin(2*pi*[0:383]*20.4/512);
h(157:512) = h(157:512)+ exp(-5*[0:355]/256).*sin(2*pi*[0:355]*30.7/512);
h(269:512) = h(269:512) + exp(-4*[0:243]/256).*sin(2*pi*[0:243]*25.3/512);
h(397:512) = h(397:512) + exp(-4*[0:115]/256).*sin(2*pi*[0:115]*15.6/512);
figure(10), plot(h), xlim([0 len]);
xlabel('Sample Point Number'), ylabel('Amplitude');
M = 512; H = [fft(h) fft(h)];
g = 1.0; gf = 0.5;
gb = ((pi-4)*gf+sqrt((8*pi+3*pi^2)*gf- ...
(4*pi^2-8*pi)*g))/2/(pi-2);
t = [[0:floor(M/2)-1]/gb [-floor(M/2):-1]/gf];
W = [1 zeros(1,M-1)];
for m=0:floor(M/4)-1;
STR(m+1,:) = ifft(H(m+1:m+M) .* W);
w = abs(m+1)/sqrt(2.*pi)*2/(gb+gf) ...
* exp(-(m+1)^2*t.^2/(2*M^2));
W = fft(w/sum(w));
end
figure(11), contourf(abs(STR),'ShowText','off');
ylabel('Frequency (Hz)');
% shading interp;
colormap(gray)
colormap(flipud(colormap))
shading flat;
colorbar
figure(12)
% subplot(2,1,1),
subplot('position',[0.1 0.45 0.77 0.5]),
contourf(abs(STR),'ShowText','off');
colormap(gray)
colormap(flipud(colormap))
shading flat;
colorbar
colorbar('position',[0.9 0.15 0.032 0.8]);
% subplot(2,1,2),
subplot('position',[0.1 0.15 0.77 0.2]),
plot(h), xlim([0 len]);
xlabel('Sample Point Number'), ylabel('Amplitude');
reference: PII. S1064827500369803
  2 Kommentare
KSSV
KSSV am 5 Mai 2017
@cbentter, it is better to give credits to the user who have helped you. I prefer accepting Santha Raj's answer rather then own-self.
cbentter
cbentter am 13 Mai 2017
Bearbeitet: cbentter am 13 Mai 2017
See below Santhana Raj comment.

Melden Sie sich an, um zu kommentieren.

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by