Estimates from Gaussian Process regression (function: `fitgpr`) for given set of hyperparameter
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Pankaj
am 3 Mai 2017
Beantwortet: Gautam Pendse
am 20 Mai 2017
I am interested in estimating y using Gaussian Process for given hyperparameters and noise parameter i.e. without optimizing for parameters.
In the following example; [3.5, 6.2, 0.2] are provided as initial guess parameters,
load(fullfile(matlabroot,'examples','stats','gprdata2.mat'))
sigma0 = 0.2;
kparams0 = [3.5, 6.2];
gprMdl2 = fitrgp(x,y,'KernelFunction','squaredexponential',...
'KernelParameters',kparams0,'Sigma',sigma0);
ypred2 = resubPredict(gprMdl2);
But I am interested in seeing model's response y and other properties (like: loglikelihood) precisely for parameters [3.5, 6.2, 0.2] not for optimized ones.
Thanks
0 Kommentare
Akzeptierte Antwort
Gautam Pendse
am 20 Mai 2017
Hi Pankaj,
You probably want to use 'FitMethod','none' in the call to fitrgp. For more info, have a look at the doc for 'FitMethod':
https://www.mathworks.com/help/stats/fitrgp.html#namevaluepairarguments
Hope this helps,
Gautam
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Gaussian Process Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!