system of equations with nonlinear constraint
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Mohammadfarid ghasemi
am 19 Apr. 2017
Kommentiert: Torsten
am 19 Apr. 2017
Hi, I have a system of three linear equations and three unknowns as below:
x(1).*(A11-B)+x(2).*A12+x(3).*A13=0
x(1).*A12 +x(2).*(A22-B)+x(3).*A23=0
x(1).*A13 +x(3).*(A33-B)+x(2).*A23=0
applying the fsolve yields the obvious answer of [0 0 0], Therefore, I have to define the following nonlinear and linear constraints:
x(1)^2+x(2)^2+x(3)^2=1.0 & -1<=x(1),x(2),x(3)<=1
I'm familiar with fmincon but it is applicable for scalar functions when one wants to find min f(x). I wonder how can I solve the aforementioned problem? Thank you so much for your time and attention.
2 Kommentare
Akzeptierte Antwort
Torsten
am 19 Apr. 2017
Bearbeitet: Torsten
am 19 Apr. 2017
Then x is a normalized eigenvector to the minimum eigenvalue of the matrix
M=A*transpose(A)
where
A=[A11-B A12 A13;A12 A22-B A23;A13 A23 A33-B]
help eig
Best wishes
Torsten.
3 Kommentare
Torsten
am 19 Apr. 2017
Take a look at this thread:
https://de.mathworks.com/matlabcentral/answers/328754-rotation-that-maximises-a-vector-length
You search for a vector "that minimizes a vector length".
Best wishes
Torsten.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Nonlinear Optimization finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!