Problems with kmeans clustering

15 Ansichten (letzte 30 Tage)
sam  CP
sam CP am 31 Mär. 2017
Kommentiert: sam CP am 3 Apr. 2017
OI have used the following code to segment the attached image. But each iteration on the same image shows different result. How can i solve this by using rng('default'); ?
  2 Kommentare
sam  CP
sam CP am 31 Mär. 2017
Bearbeitet: sam CP am 31 Mär. 2017
%k-means clustering algorithm
imData = reshape(Y,[],1);
imData = double(imData);
[IDX nn] = kmeans(imData,'default');
imIDX = reshape(IDX,size(Y));
figure, imshow(imIDX,[]),title('Image after applying k-means Clustering Algorithm');
Where can i apply the rng('default'); ?

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

the cyclist
the cyclist am 31 Mär. 2017
Bearbeitet: the cyclist am 31 Mär. 2017
Looking at your code, you should be able to put the line
rng('default')
literally anywhere before the call to kmeans, because you do not call any other random number functions. But the safest bet might be to call it in the line just before the call to kmeans, in case you do something differently later.
But, also, I don't think you put 'default' in the actual kmeans call. So it should be like this ...
%k-means clustering algorithm
imData = reshape(Y,[],1);
imData = double(imData);
rng('default')
[IDX nn] = kmeans(imData);
imIDX = reshape(IDX,size(Y));
figure, imshow(imIDX,[]),title('Image after applying k-means Clustering Algorithm');
  10 Kommentare
sam  CP
sam CP am 3 Apr. 2017
I have already found that the kmeans clustering method can't be detect the tumor when it is very small.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by