Compute Gradient of a Scalar 3-D Field Defined On a non Uniform Grid
8 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have the values of a scalar Field in 3 dimensions over a randomly arranged set of points in space. How do I calculate the components of the gradient of such function at the same point locations?
0 Kommentare
Antworten (2)
darova
am 25 Mär. 2021
What about griddata?
% assume x,y,z are your random coordinates
% assume u,v,w are your vectors (gradients)
% assume that you can interpolate Z variable
xx = linspace(min(x(:)),max(x(:)),20);
yy = linspace(min(y(:)),max(y(:)),20);
[x1,y1] = meshgrid(xx,yy); % create regular mesh
z1 = griddata(x,y,z,x1,y1); % interpolate Z coordinate
u1 = griddata(x,y,u,x1,y1); % interpolate gradient U
v1 = griddata(x,y,v,x1,y1); % interpolate gradient V
w1 = griddata(x,y,w,x1,y1); % interpolate gradient W
2 Kommentare
Ramesh Rajesh
am 26 Mär. 2021
Thanks for your code. I have data of coordinates in X,Y,Z with a scalar value. The locations of X,Y,Z are random. How do I find gradients (u,v,w) of the random coordinates?
darova
am 26 Mär. 2021
Find then use surfnorm
h = surf(x1,y1,z1);
[u,v,w] = surfnorm(h);
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!