Compute Gradient of a Scalar 3-D Field Defined On a non Uniform Grid
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have the values of a scalar Field in 3 dimensions over a randomly arranged set of points in space. How do I calculate the components of the gradient of such function at the same point locations?
0 Kommentare
Antworten (2)
darova
am 25 Mär. 2021
What about griddata?
% assume x,y,z are your random coordinates
% assume u,v,w are your vectors (gradients)
% assume that you can interpolate Z variable
xx = linspace(min(x(:)),max(x(:)),20);
yy = linspace(min(y(:)),max(y(:)),20);
[x1,y1] = meshgrid(xx,yy); % create regular mesh
z1 = griddata(x,y,z,x1,y1); % interpolate Z coordinate
u1 = griddata(x,y,u,x1,y1); % interpolate gradient U
v1 = griddata(x,y,v,x1,y1); % interpolate gradient V
w1 = griddata(x,y,w,x1,y1); % interpolate gradient W
2 Kommentare
Ramesh Rajesh
am 26 Mär. 2021
Thanks for your code. I have data of coordinates in X,Y,Z with a scalar value. The locations of X,Y,Z are random. How do I find gradients (u,v,w) of the random coordinates?
darova
am 26 Mär. 2021
Find
then use surfnorm
h = surf(x1,y1,z1);
[u,v,w] = surfnorm(h);
Siehe auch
Kategorien
Mehr zu Interpolation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!