Compute Gradient of a Scalar 3-D Field Defined On a non Uniform Grid

2 Ansichten (letzte 30 Tage)
Alessandro
Alessandro am 31 Mär. 2017
Kommentiert: darova am 26 Mär. 2021
I have the values of a scalar Field in 3 dimensions over a randomly arranged set of points in space. How do I calculate the components of the gradient of such function at the same point locations?

Antworten (2)

Ramesh Rajesh
Ramesh Rajesh am 25 Mär. 2021
Did you manage to figure out ? I have same question.

darova
darova am 25 Mär. 2021
What about griddata?
% assume x,y,z are your random coordinates
% assume u,v,w are your vectors (gradients)
% assume that you can interpolate Z variable
xx = linspace(min(x(:)),max(x(:)),20);
yy = linspace(min(y(:)),max(y(:)),20);
[x1,y1] = meshgrid(xx,yy); % create regular mesh
z1 = griddata(x,y,z,x1,y1); % interpolate Z coordinate
u1 = griddata(x,y,u,x1,y1); % interpolate gradient U
v1 = griddata(x,y,v,x1,y1); % interpolate gradient V
w1 = griddata(x,y,w,x1,y1); % interpolate gradient W
  2 Kommentare
Ramesh Rajesh
Ramesh Rajesh am 26 Mär. 2021
Thanks for your code. I have data of coordinates in X,Y,Z with a scalar value. The locations of X,Y,Z are random. How do I find gradients (u,v,w) of the random coordinates?
darova
darova am 26 Mär. 2021
Find then use surfnorm
h = surf(x1,y1,z1);
[u,v,w] = surfnorm(h);

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Interpolation finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by