Solve a system of Partial Differential Equations using function BVP4C

4 Ansichten (letzte 30 Tage)
Hello every one. I have a Boundary Value Problem to solve. When I press "run", an error appears: "Warning: Explicit solution could not be found. > In solve at 160". How can I fix my errors. Thank you in advance!
Below is my Boundary Value Problem and the code:
BVP problem:
S'''+3SS''-2*S'*S'+Y-109.963*F=0
Y''+3*5.076*S*Y'+0.0000007738*F'*Y'+0.00000255*Y'*Y'=0
F''+3*5.076*42770*S*F'+2.914*Y''=0
Boundary Conditions:
x=0 then S=S'=0, Y=1, F=1
x=infinitive then S'=Y=F=0
My code:
Editor window 1:
clear all; close all; clc;
init=bvpinit(linspace(0,4,100),[0 0 0 0 0 0 0 0 0])
sol=bvp4c(@rhs_bvp,@bc_bvp,init);
x=linspace(0,4,1000);
BS=deval(sol,x);
plot(x,BS);
Editor window 2:
function rhs=rhs_bvp(x,y)
rhs=[y(2);y(3);-3*y(1)*y(3)+2*y(2)*y(2)-y(5)+109.963*y(8);y(6);-3*5.076*y(1)*y(6)-0.0000007738*y(9)*y(6)-0.000002255*y(6)*y(6);y(9);-3*5.076*42770*y(1)*y(9)+2.914*3*5.076*y(1)*y(6)+2.914*0.0000007738*y(9)*y(6)+2.914*0.000002255*y(6)*y(6)];
Editor window 3:
function bc=bc_bvp(yl,yr)
bc=[yl(1);yl(2);yl(5)-1;yl(8)-1;yr(2);yr(5);yr(8)];

Akzeptierte Antwort

Torsten
Torsten am 28 Mär. 2017
rhs=[y(2);y(3);-3*y(1)*y(3)+2*y(2)*y(2)-y(4)+109.963*y(6);y(5);-3*5.076*y(1)*y(5)-0.0000007738*y(5)*y(7)-0.000002255*y(5)*y(5);y(7);-3*5.076*42770*y(1)*y(7)-2.914*(-3*5.076*y(1)*y(5)-0.0000007738*y(5)*y(7)-0.000002255*y(5)*y(5))];
bc=[yl(1);yl(2);yl(4)-1;yl(6)-1;yr(2);yr(4);yr(6)];
Best wishes
Torsten.

Weitere Antworten (2)

Bill Greene
Bill Greene am 28 Mär. 2017
It looks to me like you have 9 dependent variables and only 7 equations and boundary conditions. Clearly, that can't be solved.

Hiep Hoang
Hiep Hoang am 3 Apr. 2017
Thank Bill Greene and Torsten for your comments. I already got some results, but results are not so good. The residual is quite large as compared to tolerance.
I think the problem is the initial guess. The number of mesh points is 1000. I specify the initial guess as following:
init=bvpinit(linspace(0,10,1000),[0 0 1 1 -0.33 1 -1])
It means that at each of 1000 points, y(1)=0, y(2)=0, y(3)=1, y(4)=1, y(5)=-0.33, y (6)=1, y(7)=-1. But how can I specify the initial guess at only one point x=0, I think it can improve the results.
  1 Kommentar
Torsten
Torsten am 4 Apr. 2017
Use a function for yinit:
https://de.mathworks.com/help/matlab/ref/bvpinit.html
Best wishes
Torsten.

Melden Sie sich an, um zu kommentieren.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by