How to solve this system using ODE45?

18 Ansichten (letzte 30 Tage)
Seungman Kim
Seungman Kim am 24 Mär. 2017
Kommentiert: Steven Lord am 25 Jan. 2020
The ODE system
dx/dt = -8/3 x + yz;
dy/dt = -10y + 10z;
dz/dt = -x*y + 28y - z when t=[0,50]
I only learned how to solve one equation each but,
I wanna solve this system using ODE45 on matlab
please help me how to make the script.

Akzeptierte Antwort

Star Strider
Star Strider am 24 Mär. 2017
You first must assign ‘x’, ‘y’, and ‘z’ to a vector, then create the appropriate first-order differential equations with respect to each variable.
Example:
% % % MAPPING: x = v(1), y = v(2), z = v(3)
% dv(1,:) = -8/3.*v(1) + v(2).*v(3);
% dv(2,:) = -10*v(2) + 10*v(3);
% dv(3,:) = -v(1).*v(2) + 28*v(2) - v(3);
v_fcn = @(t,v) [-8/3.*v(1) + v(2).*v(3); -10*v(2) + 10*v(3); -v(1).*v(2) + 28*v(2) - v(3)];
ts = [0 50];
init_cond = [10; 10; 10];
[T,V] = ode45(v_fcn, ts, init_cond);
figure(1)
plot(T,V)
grid
I used an anonymous function here, simply for convenience. See the section on ‘Anonymous Functions’ in Function Basics for details on how to write them and use them.

Weitere Antworten (1)

Sameer kumar nayak
Sameer kumar nayak am 25 Jan. 2020
7d²x/dt²+3dx/dt+5x+6=0 how can we solve using matlab using ode45??
  1 Kommentar
Steven Lord
Steven Lord am 25 Jan. 2020
See the "Nonstiff van der Pol Equation" example on this documentation page. You should be able to use the same techniques as that example to solve your ODE.

Melden Sie sich an, um zu kommentieren.

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by