How to disable validation and test data set in neural network

4 Ansichten (letzte 30 Tage)
Emiliano Rosso
Emiliano Rosso am 22 Mär. 2017
Beantwortet: Greg Heath am 14 Feb. 2020
I need to train patternnet neural network using all data set in the training set and avoiding validation check. I found two methods and they works very well in command line but not in a script returning very simple errors.
method 1:
mynet.divideFcn = '';
method 2:
mynet.divideParam.trainRatio = 1;
mynet.divideParam.valRatio = 0;
mynet.divideParam.testRatio = 0;
and the code:
mynet=patternnet([]);
P=rand(10,1000);
T=rand(2,1000);
[mynet,tr]=train(mynet,P,T);
Matlab R2012 b windows xp 32
Thanks !

Antworten (2)

Greg Heath
Greg Heath am 14 Feb. 2020
You have to define net before modifying any properties.
clear all, close all, clc
[x,t] = iris_dataset;
for i = 1:2
net = patternnet([]);
if i==1
net.divideFcn = '';
else
net.divideParam.trainRatio = 1;
net.divideParam.valRatio = 0;
net.divideParam.testRatio = 0;
end
net = train(net,x,t);
view(net)
y = net(x);
MSE(i) = mse(y-t)
end
MSE = 0.0084 0.0084
Hope this helps.
Greg

Prasanth Sundaravelu
Prasanth Sundaravelu am 26 Apr. 2018
Bearbeitet: Prasanth Sundaravelu am 26 Apr. 2018
Hi, I think you need to type specific Divide function, instead of blank.
Try this : mynet.divideFcn = 'dividerand';

Kategorien

Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by