Random Way Point modibility model: use files in Random_Waypoint. Entry point: test_Execute.m For more information: http://www.mathworks.com/matlabcentral/fileexchange/30939-random-waypoint-mobility-model --> ./mobility_track_input/vs_node_50_7_24.mat
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Random Way Point modibility model: use files in Random_Waypoint. Entry point: test_Execute.m
For more information: http://www.mathworks.com/matlabcentral/fileexchange/30939-random-waypoint-mobility-model
--> ./mobility_track_input/vs_node_50_7_24.mat
Use 'genMobileData.m' for other input generation and data pre-processing:
* process the 1-hop neighbors -> encMat_50_7_24.mat
* number of service requests in queue
* number of concurrent requests
* cost/reward
--> 20000 results will be generated and stored in allData60_20000.mat
* malicious nodes -> malNode1.mat
* distributing data to each nodes
--> accHist_50_7_24.mat
Use 'preprocess_accHist.m' for preprocessing data based on recommendation attacks
--> aggrHist_mal***_50_7_24.mat
Use 'genServiceHistory.m'
* binary service satisfaction
--> 'servBin_50_7_24.mat'
* similarity for nodes (used for Adaptive trust)
--> sim_adaptive.mat
NOTE: you should manually input your \beta_j @gt_weight
For Beta Reputation:
Binary observations are accumulated by 'preprocess_accHist.m'
--> numInd_mal***_50_7_24.mat
1 Kommentar
Walter Roberson
am 15 Mär. 2017
Please explain the difficulty you are observing. How would we be able to tell whether the output was correct for your needs or not?
Antworten (0)
Siehe auch
Kategorien
Mehr zu Biological and Health Sciences finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!