k-medians clustering technique

13 Ansichten (letzte 30 Tage)
muhammad ismat
muhammad ismat am 13 Mär. 2017
Kommentiert: Federico Maddanu am 14 Mär. 2025
please, i want matlab code of k-median clustering technique

Antworten (1)

NVSL
NVSL am 24 Jan. 2025
I recently looked into whether there's a function for k-median clustering in MATLAB, or if we could tweak the existing "k-means" or "k-medoids" functions to do the job.
I couldn't find anything ready-made, but I figured out that we can use MATLAB's "median" function to create our own "kMedianClustering" function. Hope this helps!
function [centroids, idx] = kMedianClustering(X, k, maxIter)
% X: data points (n x d matrix)
% k: number of clusters
% maxIter: maximum number of iterations
% Initialize centroids randomly
[n, d] = size(X);
centroids = X(randperm(n, k), :);
idx = zeros(n, 1);
for iter = 1:maxIter
% Assign each point to the nearest centroid
for i = 1:n
distances = sum(abs(X(i, :) - centroids), 2);
[~, idx(i)] = min(distances);
end
% Update centroids
newCentroids = zeros(k, d);
for j = 1:k
clusterPoints = X(idx == j, :);
if ~isempty(clusterPoints)
newCentroids(j, :) = median(clusterPoints, 1);
else
newCentroids(j, :) = centroids(j, :);
end
end
% Check for convergence
if all(newCentroids == centroids)
break;
end
centroids = newCentroids;
end
end
% randomly generated data
data = [randn(50, 2) + 1; randn(50, 2) - 1];
% Number of clusters
k = 2;
% Maximum number of iterations
maxIter = 100;
% Perform k-median clustering
[centroids, idx] = kMedianClustering(data, k, maxIter);
% Plot the results
figure;
hold on;
colors = ['r', 'g', 'b'];
for i = 1:k
scatter(data(idx == i, 1), data(idx == i, 2), 36, colors(i), 'filled');
end
scatter(centroids(:, 1), centroids(:, 2), 100, 'kx', 'LineWidth', 3);
hold off;
title('K-Median Clustering');
  1 Kommentar
Federico Maddanu
Federico Maddanu am 14 Mär. 2025
I think (but I m not sure) kmeans does this when you select 'cityblock' as distance!

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Cluster Analysis and Anomaly Detection finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by