how to find the end of major and minor axis of an ellipsoid
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Dear,
I have this information of an ellipse
a=29.2139; b=17.7345; xC= 43.9666; yC=42.9211; angle=29.7207;
can any one tell me why the end of the major and minor axis are not in the right place. I tried to rotate them using matrix H, but still it gives me wrong places. can any one help please.
Many thanks,
Nadia,
1 Kommentar
Antworten (3)
Image Analyst
am 10 Mär. 2017
Looks like you forgot to apply your rotation matrix to the "g" coordinates.
2 Kommentare
Roger Stafford
am 13 Mär. 2017
I think you need
axis equal
so that scaling is the same for both axes.
1 Kommentar
Roger Stafford
am 21 Apr. 2017
Bearbeitet: Walter Roberson
am 21 Apr. 2017
I will make some assumptions about the ellipse you describe:
- The ‘a’ and ‘b’ values are the lengths of the ellipse’s semi-major and semi-minor axes, respectively.
- xC and yC are the cartesian coordinates of the ellipse’s center.
- The ‘angle’ is the angle in degrees, measured counterclockwise, from the x-axis to the ellipse major axis.
The ellipse axes’ four ends will then be:
Major axis, upper right: x1 = xC+a*cosd(angle)
y1 = yC+a*sind(angle)
lower left: x2 = xC-a*cosd(angle)
y2 = yC-a*sind(angle)
Minor axis, upper left: x3 = xC-b*sind(angle)
y3 = yC+b*cosd(angle)
lower right: x4 = xC+b*sind(angle)
y4 = yC-b*cosd(angle)
You can make a plot of the ellipse as:
t = linspace(-180,180,1000);
x = xC+a*cosd(t)*cosd(angle)-b*sind(t)*sind(angle);
y = yC+a*cosd(t)*sind(angle)+b*sind(t)*cosd(angle);
plot(x,y,’y-‘,[x1,x2],[y1,y2],’r*’,[x3,x4],[y3,y4],’g*’)
axis equal
Note: It is not a good practice to use 'angle' for the name of your variable, since that is a reserved name for one of matlab's functions.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Motion Modeling and Coordinate Systems finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!