How can I create an uncertain idpoly model if I know FIR coeffiecients and its uncertainties?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Alexander Avdonin
am 10 Mär. 2017
Beantwortet: Michelle Wu
am 14 Mär. 2017
Hello, I need to build an uncertain idpoly model. I have the FIR coefficients (e.g. B(z)=[0 1 2 3 2 1]) and the sampling time (e.g. Ts=1 s), then I build a idpoly model according to the MATLAB help:
sys=idpoly([],[0 1 2 3 2 1],[],[],[],[],1)
Now the question: I also have an uncertainty in each FIR coefficient which is expressed in standard deviation: std=[0 1e-3 2e-3 3e-3 2e-3 1e-3]. How can I incorporate this knowledge in the idpoly model?
0 Kommentare
Akzeptierte Antwort
Michelle Wu
am 14 Mär. 2017
You may want to use function ' setcov ' to set covariance data in identified model. First, use function 'idpoly' to obtain the identified model (sys in your case). Then, use the following syntax:
sys1 = setcov(sys,cov)
where cov is the parameter covariance matrix. cov could be represented by an np-by-np semi-positive definite symmetric matrix, where np is equal to the number of parameters of sys (5 in your case). Thus, before using 'setcov', you also need to convert the standard deviation into a covariance matrix. To do so, you may consider using function ' corr2cov ' if you have access to the Financial Toolbox.
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Uncertain Models finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!