How to perform fft
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Efstathios Kontolatis
am 23 Feb. 2017
Beantwortet: Rik
am 23 Feb. 2017
I have 1000 samples from an experiment with frequency Fs=67890 Hz. How can I perform fft on them? I followed the guide here https://uk.mathworks.com/help/matlab/ref/fft.html but it seems that the dominant frequency is zero which has no physical meaning.
These are my data
x =
0.3551
0.2308
0.3209
0.4527
0.4606
0.4511
0.4925
0.4769
0.5424
0.4698
0.4246
0.4502
0.5823
0.5451
0.4235
0.4062
0.3832
0.2749
0.1591
0.1889
0.4155
0.3840
0.3582
0.1852
0.2677
0.2454
0.2458
0.2100
0.1469
0.1186
0
0.4154
0.4807
0.4320
0.4072
0.3352
0.3357
0.2770
0.2801
0.3578
0.2703
0.3626
0.0998
0.3656
0.2590
0.4388
0.4144
0.2631
0
0.1076
0
0.4535
0.4626
0.4159
0.3686
0.4763
0.2582
0.2961
0.3691
0.3860
0.3875
0.4018
0.4292
0.3921
0.3128
0.4884
0.3153
0.2672
0.3448
0.3787
0.4799
0.3870
0.3534
0.3968
0.3006
0.3119
0.3585
0.1352
0.4154
0.3323
0.3733
0.3232
0.4116
0.3276
0.4852
0.3715
0.3991
0.3766
0.4866
0.3483
0.2736
0.3153
0.4049
0.3774
0.3071
0.3831
0.3992
0.3661
0.3337
0.1616
0.3305
0.4556
0.5053
0.4209
0.2868
0.2666
0.3057
0.4016
0.2579
0.4286
0.1672
0.4614
0.3814
0.4272
0.3374
0.4215
0.4788
0.3943
0.4097
0.3937
0.4230
0.4981
0.4821
0.1748
0.4015
0.5066
0.4959
0.4267
0.4692
0.3354
0.2919
0.5676
0.4875
0.4957
0.4122
0.5627
0.4573
0.3724
0.4320
0.4127
0.3655
0.3132
0.1982
0.2905
0.3757
0.5282
0.4584
0.4669
0.4059
0.3229
0.4696
0.3960
0.5024
0.4505
0.4084
0.4720
0.4251
0.3683
0.3791
0.3650
0.2426
0.3169
0.4405
0.4129
0.4839
0.3578
0.3550
0.4090
0.4063
0.4497
0.5195
0.4645
0.4514
0.4375
0.3405
0.5263
0.4195
0.3746
0.2887
0.4121
0.3987
0.4428
0.4065
0.3340
0.3511
0.3328
0.3698
0.4988
0.3478
0.2817
0.2795
0.4926
0.3976
0.3728
0.4816
0.4690
0.4328
0.6150
0.1455
0.3981
0.3184
0.4321
0.3678
0.3407
0.2930
0.3325
0.5747
0.5205
0.4418
0.4604
0.3597
0.3404
0.3153
0.5779
0.3666
0.3215
0.2842
0.2314
0.2940
0.3745
0.3215
0.2711
0.3004
0.3946
0.3942
0.3256
0.2587
0.3177
0.2474
0.2057
0.4025
0.4435
0.4262
0.3123
0.3033
0.3595
0.3224
0.5162
0.5210
0.5185
0.5082
0.5174
0.4634
0.4224
0.5525
0.4637
0.5132
0.5806
0.3519
0.5952
0.5103
0.4021
0.3890
0.3671
0.5863
0.3946
0.3198
0.1014
0.4934
0.4089
0.5890
0.4601
0.5628
0.5392
0.4553
0.4755
0.5468
0.4478
0.4900
0.3323
0.2200
0.4340
0.4119
0.4075
0.3577
0.5101
0.3585
0.3939
0.4366
0.3738
0.3934
0.4416
0.4464
0.3510
0.3791
0.4289
0.3966
0.3113
0.2998
0.4251
0.4033
0.3393
0.3843
0.4246
0.4224
0.4072
0.2900
0.4400
0.5314
0.4580
0.4382
0.4118
0.4298
0.5275
0.4492
0.4100
0.4098
0.4530
0.4531
0.4177
0.5175
0.2001
0.5330
0.4534
0.4613
0.0637
0.4619
0.5318
0.4129
0.3292
0.3293
0.4428
0.3560
0.4558
0.3736
0.2481
0.3881
0.3586
0.3284
0.0465
0.3070
0.4227
0.3891
0.3911
0.5650
0.3529
0.3481
0.3482
0.3682
0.5319
0.5387
0.1824
0.3062
0.4315
0.4625
0.3685
0.5253
0.4801
0.5584
0.4634
0.5326
0.4494
0.4534
0.4064
0.3226
0.1444
0.4603
0.4277
0
0.3656
0.4511
0.5926
0.4544
0.4301
0.3542
0.3607
0.3684
0.4694
0.5180
0.3940
0.4657
0.3901
0.4060
0.3740
0.3351
0.3571
0.3845
0.3225
0.4296
0.3675
0.4469
0.3926
0.3571
0.3877
0.2835
0.4564
0.4695
0.3038
0.4322
0.3454
0.4157
0.4131
0.3656
0.3244
0.3835
0.3835
0.3669
0.3769
0.3392
0.4072
0.4156
0.4026
0.4092
0.3624
0.4615
0.3921
0.4848
0.4077
0.2904
0.3404
0.3485
0.4472
0.4097
0.3488
0.3555
0.2958
0.1905
0.2594
0.5082
0.3526
0.5096
0.2486
0.3777
0.3662
0.4036
0.4170
0.4132
0.4760
0.4813
0.2767
0.4714
0.3762
0.3883
0.2067
0.1974
0.3166
0.3852
0.2576
0.3949
0.2443
0.3779
0.4300
0.3881
0.3786
0.3516
0.4147
0.3850
0.4277
0.4620
0.4737
0.4113
0.3448
0.3532
0.3431
0.2336
0.4660
0.4304
0.4478
0.2664
0.3472
0.3404
0.3530
0.5004
0.4685
0.4902
0.5056
0.4876
0.3388
0.3673
0.4873
0.3627
0.3553
0.3385
0.3725
0.5111
0.4345
0.3356
0.3316
0.3864
0.3736
0.3033
0.4409
0.4224
0.3873
0.3507
0.3317
0.3222
0.2853
0.3617
0.4143
0.4293
0.3870
0.3259
0.4120
0.3762
0.3981
0.4022
0.3711
0.3616
0.4801
0.3860
0.2593
0.5820
0.4110
0.4032
0.4109
0.3933
0.4776
0.2430
0.4151
0.4863
0.3633
0.1881
0.1723
0.4596
0.3971
0.3804
0.4301
0.2390
0.4319
0.3753
0.4073
0.4224
0.4255
0.4830
0.3504
0.3461
0.1993
0.4117
0.4678
0.4710
0.3577
0.3979
0.3993
0.3446
0.3214
0.3113
0.3695
0.3847
0.4664
0.4420
0.3579
0.5084
0.4741
0.4416
0.4036
0.3741
0.4747
0.5657
0.4787
0.4972
0.3841
0.2781
0.4447
0.5256
0.4557
0.4701
0.4399
0.3622
0.3493
0.3782
0.3784
0.6737
0.5224
0.4507
0.2935
0.4661
0.3368
0.3713
0.4094
0.3704
0.4510
0.3874
0.4808
0.3836
0.4163
0.2954
0.4038
0.3723
0.3454
0.3572
0.2956
0.3123
0.3045
0.3775
0.3586
0.3899
0.3283
0.2579
0.3975
0.3386
0.3333
0.3667
0.2439
0.3291
0.4948
0.4187
0.4469
0.3125
0.2881
0.1765
0.3667
0.4266
0.4227
0.4985
0.3694
0.3063
0.3647
0.3031
0.4227
0.4508
0.3426
0.2608
0.3380
0.4410
0.2822
0.3007
0.2079
0.3175
0.2548
0.2257
0.2664
0.2629
0.3153
0.2829
0.1878
0.2932
0.4240
0.3506
0.3450
0.3436
0.3147
0.4307
0.3297
0.3263
0.2626
0.3670
0.3903
0.3504
0.3635
0.3506
0.3645
0.3349
0.3742
0.4376
0.3087
0.1669
0.5031
0.4398
0.3169
0.1251
0.3737
0.4122
0.3529
0.3419
0.3728
0.3230
0.3516
0.3272
0.4056
0.4307
0.4187
0.3042
0.3735
0.3499
0.4240
0.1846
0.2853
0.2608
0.3536
0.3915
0.4461
0.4830
0.4267
0.2480
0.4508
0.1829
0.2214
0.3592
0.4563
0.2695
0.3125
0.2981
0.4959
0.3519
0.1361
0.3236
0.3682
0.3274
0.4352
0.3589
0.3794
0.3441
0.4345
0.3739
0.3811
0.3532
0.3125
0.4182
0.2854
0.3541
0.3988
0.4035
0.3540
0.3104
0.4531
0.5163
0.5809
0.3362
0.4588
0.4724
0.4871
0.4134
0.4033
0.3325
0.4309
0.3734
0.3137
0.3562
0.4370
0.2704
0.3935
0.3315
0.3020
0.3531
0.2427
0.3931
0.3654
0.3365
0.5205
0.3245
0.6086
0.4521
0.3837
0.4901
0.3527
0.4278
0.2909
0.3649
0.3479
0.2947
0.5558
0.4566
0.5902
0.4304
0.5311
0.5395
0.3745
0.5311
0.3001
0.4030
0.4117
0.3925
0.4652
0.3820
0.2739
0.4634
0.3541
0.3096
0.3282
0.3180
0.2612
0.2147
0.4373
0.4462
0.4324
0.4857
0.2976
0.3247
0.3276
0.3106
0.5885
0.5510
0.3492
0.3284
0.4325
0.4530
0.5664
0.5522
0.4787
0.4568
0.4210
0.5093
0.4775
0.4069
0.4151
0.4295
0.4312
0.3926
0.3863
0.3583
0.4121
0.3848
0.3773
0.3826
0.3374
0.3023
0.3368
0.4261
0.2167
0.4879
0.3032
0.2540
0.5302
0.4484
0.4872
0.3173
0.3800
0.4337
0.3698
0.3272
0.2498
0.3854
0.4042
0.4299
0.4018
0.3248
0.3756
0.3824
0.4029
0.4295
0.3573
0.3036
0.0557
0.4097
0.5186
0.4060
0.3733
0.2700
0.4013
0.2437
0.4369
0.3374
0.3853
0.4096
0.3145
0.3664
0.4738
0.2346
0.3548
0.2804
0.4698
0.4039
0.4628
0.4387
0.3089
0.3981
0.4727
0.4335
0.3591
0.4623
0.3922
0.4100
0.3585
0.4101
0.3834
0.2742
0.2886
0.4118
0.4812
0.4434
0.4607
0.3134
0.0859
0.1066
0.3441
0.2788
0.3310
0.4330
0.3551
0.4324
0.4427
0.3585
0.4497
0.1920
0.3622
0.4184
0.4762
0.4427
0.4545
0.4054
0.4440
0.3977
0.5034
0.5101
0.3951
0.5061
0.4242
0.4591
0.5080
0.4194
0.6229
0.3667
0.4874
0.4718
0.4996
0.2885
0.4989
0.5071
0.4529
0.5001
0.4165
0.4620
0.4430
0.3566
0.3709
0.4315
0.4694
0.3501
0.3343
0.4227
0.3484
0.3737
0.1854
0.4691
0.4328
0.4059
0.4462
0.4397
0.3578
0.3274
0.4586
0.4864
0.5225
0.3509
0.4212
0.4003
0.4854
0.1942
0.4785
0.4362
0.4213
0.4979
0.4989
0.3758
0.4904
0.6655
0.4860
0.4498
0.4712
0.3502
0.3666
0.3871
0.5061
0.3993
0.2872
0.3147
0.3531
0.4126
0.4546
0.4136
0.4674
0.4634
0.4877
0.4136
0.3401
0.4442
0.3997
0.3753
0.4675
0.3769
0.3556
0.3799
0.5048
0.3805
0.4656
0.4621
0.3986
0.2977
0.3280
0.4630
0.4375
0.3109
0.3265
0.4582
0.4432
0.3801
0.4558
0.4408
0.4279
0.3974
0.3856
0.4107
0.4463
0.4646
0.3674
0.4938
0.3389
0.4625
0.3187
0.3233
0.4389
0.3224
0.3140
0.4371
0.3664
0.4664
0.4350
0.4211
0.3415
and here is the code I have used for the fft
fs=67890;
T = 1/fs; % Sampling period
L = 1000; % Length of signal
t = (0:L-1)*T; % Time vector
y = fft(x);
P2 = abs(y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
f = fs*(0:(L/2))/L;
subplot(2,1,1), plot(t,x),title('original data'),ylabel('x'),xlabel('t')
subplot(2,1,2), plot(f,P1),title('fft'),ylabel('magnitude'),xlabel('frequency')
This gives me this image
Hope it's clear
5 Kommentare
Adam
am 23 Feb. 2017
So just do what Rik Wisselink suggests to zero-centre your data or simply remove the 0-frequency component from the final result and plot it without if you just want to look at the frequency spectrum.
Akzeptierte Antwort
Rik
am 23 Feb. 2017
[moved from comments]
To remove the 0Hz-component from the analysis, use y=fft(x-mean(x));
0 Kommentare
Weitere Antworten (1)
Pooja Patel
am 23 Feb. 2017
- amp1 = abs(fft(x1)); %Retain Magnitude
- % amp11 = amp1(1:Nsamps1/2); %Discard Half of Points
- % f11 = Fs*(0:Nsamps1/2-1)/Nsamps1; %Prepare freq data for plot
- f11 = 0:(fs1/Nsamps1):1000; %Prepare freq data for plot
- amp11 = amp1(1:length(f11)); % keep data till 1kHz
- plot(f11,amp11);
0 Kommentare
Siehe auch
Kategorien
Mehr zu Spectral Measurements finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!