How to split an image datastore for cross-validation?

5 Ansichten (letzte 30 Tage)
Hello,
The method
splitEachLabel
of an
imageDatastore
object splits an image data store into proportions per category label. How can one split an image data store for training using cross-validation and using the
trainImageCategoryCalssifier
class?
I.e. it's easy to split it in N partitions, but then some sort of mergeEachLabel functionality is needed to be able to train a classifier using cross-validation. Or is there another way of achieving that?
Regards, Elena
  2 Kommentare
kowshik Thopalli
kowshik Thopalli am 26 Feb. 2017
I am looking for an answer to a similar problem. Did you solve it?
Tripoli Settou
Tripoli Settou am 19 Apr. 2018
I am also looking for an answer to a similar problem. Did you solve it?

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Hamza Mehboob
Hamza Mehboob am 27 Jul. 2018
[imd1 imd2 imd3 imd4 imd5 imd6 imd7 imd8 imd9 imd10] = splitEachLabel(imds,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,'randomize');
partStores{1} = imd1.Files ;
partStores{2} = imd2.Files ;
partStores{3} = imd3.Files ;
partStores{4} = imd4.Files ;
partStores{5} = imd5.Files ;
partStores{6} = imd6.Files ;
partStores{7} = imd7.Files ;
partStores{8} = imd8.Files ;
partStores{9} = imd9.Files ;
partStores{10} = imd10.Files;
for i = 1 :k
i
test_idx = (idx == i);
train_idx = ~test_idx;
imdsTest = imageDatastore(partStores{test_idx}, 'IncludeSubfolders', true,'FileExtensions','.jpeg', 'LabelSource', 'foldernames');
imdsTrain = imageDatastore(cat(1, partStores{train_idx}), 'IncludeSubfolders', true,'FileExtensions','.jpeg', 'LabelSource', 'foldernames');
%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%Write your classification task
%%%%hamzamehboob103@gmail.com for any further help.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}
  4 Kommentare
TRIPTI GOEL
TRIPTI GOEL am 5 Jun. 2020
thank you for the code.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by