How to split an image datastore for cross-validation?
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Elena Ranguelova
am 10 Feb. 2017
Kommentiert: Sajja Tulasi Krishna
am 22 Feb. 2021
Hello,
The method
splitEachLabel
of an
imageDatastore
object splits an image data store into proportions per category label. How can one split an image data store for training using cross-validation and using the
trainImageCategoryCalssifier
class?
I.e. it's easy to split it in N partitions, but then some sort of mergeEachLabel functionality is needed to be able to train a classifier using cross-validation. Or is there another way of achieving that?
Regards, Elena
2 Kommentare
Tripoli Settou
am 19 Apr. 2018
I am also looking for an answer to a similar problem. Did you solve it?
Akzeptierte Antwort
Hamza Mehboob
am 27 Jul. 2018
[imd1 imd2 imd3 imd4 imd5 imd6 imd7 imd8 imd9 imd10] = splitEachLabel(imds,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,'randomize');
partStores{1} = imd1.Files ;
partStores{2} = imd2.Files ;
partStores{3} = imd3.Files ;
partStores{4} = imd4.Files ;
partStores{5} = imd5.Files ;
partStores{6} = imd6.Files ;
partStores{7} = imd7.Files ;
partStores{8} = imd8.Files ;
partStores{9} = imd9.Files ;
partStores{10} = imd10.Files;
for i = 1 :k
i
test_idx = (idx == i);
train_idx = ~test_idx;
imdsTest = imageDatastore(partStores{test_idx}, 'IncludeSubfolders', true,'FileExtensions','.jpeg', 'LabelSource', 'foldernames');
imdsTrain = imageDatastore(cat(1, partStores{train_idx}), 'IncludeSubfolders', true,'FileExtensions','.jpeg', 'LabelSource', 'foldernames');
%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%Write your classification task
%%%%hamzamehboob103@gmail.com for any further help.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}
4 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!