Find length of intersection between 2 points and a sphere
    5 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
I have a sphere and 2 points. The points have (x,y,z) coordinates and the sphere is defined by its centre (0,0,0) and radius R. I am trying to find the length between the 2 points which intersects the sphere. How can I script this out in Matlab?
See below, my objective is Length, L:

2 Kommentare
Antworten (3)
  Roger Stafford
      
      
 am 25 Jan. 2017
        Let P1 = [x1,y1,z1], P2 = [x2,y2,z2], and P0 the sphere center.
v = P1-P0-dot(P1-P0,P2-P1)/dot(P2-P1,P2-P1)*(P2-P1);
L = 2*sqrt(R^2-dot(v,v));
3 Kommentare
  Torsten
      
      
 am 25 Jan. 2017
        https://en.wikipedia.org/wiki/Line%E2%80%93sphere_intersection
The length L is simply abs(d1-d2) where d1, d2 are the two solutions of the quadratic equation ad^2+bd+c=0.
Best wishes
Torsten.
0 Kommentare
  Roger Stafford
      
      
 am 27 Jan. 2017
        Since this problem is in three dimensions, you can also make use of the cross product function to compute L as follows. Again, we have: P1 = [x1,y1,z1], P2 = [x2,y2,z2], and P0 is the center of the sphere of radius R.
   u = P2-P1;
   v = cross(P0-P1,u);
   L = 2*sqrt(R^2-dot(v,v)/dot(u,u));
3 Kommentare
  Roger Stafford
      
      
 am 28 Jan. 2017
				Yes, P0 can be any three-element vector, including [0,0,0], in both of the methods I have described. The essential property that is required is that all three vectors P1, P2, and P0 should be such that the infinite straight line through P1 and P2 will intersect a sphere of radius R about P0. Otherwise, in both methods the final code line would be taking the square root of a negative value, which will yield an imaginary number.
Siehe auch
Kategorien
				Mehr zu Surface and Mesh Plots finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!