Why does Support Vector Regression (fitrsvm) optimization result in poor performance ?
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Baran Yildiz
am 6 Jan. 2017
Kommentiert: antlhem
am 29 Mai 2021
Hi
I am working on a numerical prediction problem (load forecasting). I have a predictor matrix which consists of around 20 numerical variables (X_train: including historical lags, calendar information, temperature etc) and an output vector of real/target load values (Load_train). The data consists around 10.000 points
I am following the below documentation on Support Vector Regression, in particular the section 'Optimize SVM Regression'. https://matlabacademy.mathworks.com/R2016b/portal.html?course=mlml#chapter=4&lesson=7§ion=3
However after the exhaustive 'hyperparameter optimization' I get poor prediction performance, especially compared to a simpler SVR which uses Gaussian Kernel, Kernel Scale 'auto' and all other parameters set to default without any optimization. I do standardize the input and output matrices before the training. Please find below the lines for two training procedure:
"Simple SVR"
mdl_simple=fitrsvm(X_train,Load_train,'Standardize',true,
'KernelFunction','gaussian','KernelScale','auto');
"Optimized SVR"
Mdl_optimized = fitrsvm(X,Y,'Standardize','true','OptimizeHyperparameters','auto',...
'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName',
'expected-improvement-plus'))
Would anyone have any advice with regards to the optimization procedure or any ideas why optimized SVR might be giving worse results than simpler SVR?
Best regards
Baran
2 Kommentare
Walter Roberson
am 6 Jan. 2017
Generally speaking, when more sophisticated fitting procedures end up giving worse results in practice, the problem can be due to overfitting.
antlhem
am 29 Mai 2021
Could take a look into my question? https://uk.mathworks.com/matlabcentral/answers/842800-why-matlab-svr-is-not-working-for-exponential-data-and-works-well-with-data-that-fluctuates?s_tid=prof_contriblnk
Akzeptierte Antwort
Don Mathis
am 8 Jan. 2017
Bearbeitet: Walter Roberson
am 8 Jan. 2017
Maybe it's because the optimized SVR uses the default kernel function, which is 'linear'. If you include 'KernelFunction','gaussian' in your second call to fitrsvm, as you did in your first, it might perform better.
Secondarily, you could try running the optimization longer by adding the field 'MaxObjectiveEvaluations' to your struct:
Mdl_optimized = fitrsvm(X,Y,'KernelFunction','gaussian','Standardize',true,'OptimizeHyperparameters','auto',... 'HyperparameterOptimizationOptions',struct('AcquisitionFunctionName', 'expected-improvement-plus', 'MaxObjectiveEvaluations', 60))
2 Kommentare
Don Mathis
am 23 Mär. 2017
I just noticed your reply. If you have some time on your hands you could try
Mdl_optimized = fitrsvm(X,Y,'OptimizeHyperparameters','all', 'HyperparameterOptimizationOptions',struct('MaxObjectiveEvaluations', Inf, 'SaveIntermediateResults',true))
This optimizes over 6 hyperparameters until you press Control-C, at which point you'll find an object called BayesoptResults in your workspace. The best hyperparameters are obtained using
bestPoint(BayesoptResults)
which you will then need to pass to a new call to fitrsvm manually.
Weitere Antworten (0)
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!