What causes sudden jumps (disturbance) in Bode plot ?

19 Ansichten (letzte 30 Tage)
Ali Hosseini
Ali Hosseini am 20 Dez. 2016
Beantwortet: Star Strider am 20 Dez. 2016
Hi. Why is there the sudden jumps in the magnitude and phase of my bode plot around 600 rad/s? How can I avoid them?
this is the transfer function:
6.4e-38 s^21 + 6.371e-34 s^20 + 1.434e-31 s^19 + 1.381e-27 s^18 + 1.355e-25 s^17 + 1.247e-21 s^16 + 6.953e-20 s^15+ 6.007e-16 s^14 + 2.078e-14 s^13 + 1.628e-10 s^12 + 3.562e-09 s^11 + 2.352e-05 s^10 + 0.0003155 s^9 + 1.416 s^8 + 10.43 s^7 + 18.44 s^6 + 8.286 s^5
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2.56e-41 s^22 + 1.48e-37 s^21 + 6.572e-35 s^20 + 3.222e-31 s^19 + 7.23e-29 s^18 + 2.927e-25 s^17 + 4.418e-23 s^16+ 1.422e-19 s^15 + 1.62e-17 s^14 + 3.911e-14 s^13 + 3.564e-12 s^12 + 5.816e-09 s^11 + 4.358e-07 s^10 + 0.00038 s^9 + 0.02291 s^8 + 3.074 s^7 + 9.918 s^6 + 8.286 s^5

Antworten (1)

Star Strider
Star Strider am 20 Dez. 2016
You have a zero very close to the imaginary axis at that frequency:
syms s
tfn = 6.4e-38 * s^21 + 6.371e-34 * s^20 + 1.434e-31 * s^19 + 1.381e-27 * s^18 + 1.355e-25 * s^17 + 1.247e-21 * s^16 + 6.953e-20 * s^15+ 6.007e-16 * s^14 + 2.078e-14 * s^13 + 1.628e-10 * s^12 + 3.562e-09 * s^11 + 2.352e-05 * s^10 + 0.0003155 * s^9 + 1.416 * s^8 + 10.43 * s^7 + 18.44 * s^6 + 8.286 * s^5;
tfd = 2.56e-41 * s^22 + 1.48e-37 * s^21 + 6.572e-35 * s^20 + 3.222e-31 * s^19 + 7.23e-29 * s^18 + 2.927e-25 * s^17 + 4.418e-23 * s^16+ 1.422e-19 * s^15 + 1.62e-17 * s^14 + 3.911e-14 * s^13 + 3.564e-12 * s^12 + 5.816e-09 * s^11 + 4.358e-07 * s^10 + 0.00038 * s^9 + 0.02291 * s^8 + 3.074 * s^7 + 9.918 * s^6 + 8.286 * s^5;
tfnv = sym2poly(tfn);
tfdv = sym2poly(tfd);
sys1 = tf(tfnv, tfdv);
figure(1)
pzplot(sys1)
figure(2)
bode(sys1)
Using the numbers you supplied, it also seems to have poles close to the imaginary axis but in the right-half plane that could give you stability problems. I’ll let you sort that.

Kategorien

Mehr zu Fourier Analysis and Filtering finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by