Calculation of dead time and time constant for non linear system
19 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello ,
I am simulating a non linear system on simulink . I used the scope to show the output and saved the output signal with time to the workspace . Is there any function to calculate the dead time and time constant given the output with time ?
0 Kommentare
Antworten (3)
surya
am 9 Mär. 2012
Calculation of dead time is a bit debatable aspect, you might want to look at a data based approach, like system identification.. System delay calculation. Might not be very accurate.. but gives an approximate idea.
0 Kommentare
Rajiv Singh
am 16 Mär. 2012
Delays are not necessarily separable from system dynamics such as effect of poles and zeros on the response. However, in many cases, DELAYEST in System Identification Toolbox works fine to deliver delays as number of multiples of data sample time. See also http://www.mathworks.com/products/sysid/demos.html?file=/products/demos/shipping/ident/iddemo3.html
1 Kommentar
Ashim
am 22 Sep. 2017
you can easily perform the time constant analysis on the output, if you know the objective non-linear function
options = optimoptions(...); % select the options that match your data
objfcn = @(y,t) y(1) + y(2)*(1-exp(y(3)*t)) - yobs; % objective function for time constant where y2 is usually the differential. use Taylor series to construct such an equation
y0 = [y10, y20, y30]; initial guesses
lb = [10, 10, 1]...; %lower bound
ub = [100, 100, 10]; % upper bound
[haty, resnorm, res, output, exitflag] = lsqnonlin(objfcn, y0, lb,
ub, options); non-linear least squares fitting
Ashim
am 22 Sep. 2017
you can easily perform the time constant analysis on the output, if you know the objective non-linear function
options = optimoptions(...); % select the options that match your data
objfcn = @(y,t) y(1) + y(2)*(1-exp(y(3)*t)) - yobs; % objective function for time constant where y2 is usually the differential. use Taylor series to construct such an equation
y0 = [y10, y20, y30]; initial guesses
lb = [10, 10, 1]...; %lower bound
ub = [100, 100, 10]; % upper bound
[haty, resnorm, res, output, exitflag] = lsqnonlin(objfcn, y0, lb,
ub, options); non-linear least squares fitting
0 Kommentare
Siehe auch
Kategorien
Mehr zu Linear Model Identification finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!