Fitting an equation with x,y variables and b, d constant.
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi,
I have an equation.

x=[10,50,100,300,500,1000,1500,2000,3000];
y=[0.11,0.17,0.2,0.24,0.29,0.3,0.31,0.35,0.38];
I want to fit this equation and get b and d values.
I tried with lsqcurvefit command, but I can not convert this equation to y=function(x).
Anybody has a suggestion.
0 Kommentare
Akzeptierte Antwort
Torsten
am 17 Nov. 2016
Use lsqnonlin and define the functions f_i as
f_i = 1/a*(b-ydata(i)).^1.5-log(d./xdata(i))+0.5*log(1-ydata(i)/b)
Best wishes
Torsten.
5 Kommentare
Walter Roberson
am 21 Nov. 2016
lsqnonlin does not calculate Chi-Square or any other probability measure. It does not create any hypotheses about how well the model fits: it only searches for a minimum.
Torsten
am 21 Nov. 2016
You don't get statistics from lsqnonlin.
You will have to use tools like nlinfit in combination with nlparci and nlpredci.
Best wishes
Torsten.
Weitere Antworten (1)
Walter Roberson
am 18 Nov. 2016
a = some value
y1 = @(b, d, x) -b .* (exp(-(2/3) .* lambertw(-3 .* (b.^3 ./ a.^2).^(1/2) .* d.^3 ./ x.^3)) .* d.^2 - x.^2) ./ x.^2
y2 = @(b, d, x) -b .* (exp(-(2/3) .* lambertw(3 .* (b.^3 ./ a.^2).^(1/2) .* d.^3 ./ x.^3)) .* d.^2 - x.^2) ./ x.^2;
guessbd = rand(1,2);
fit1 = fittype(y1, 'coefficients', {'b', 'd'}, 'dependent', 'y', 'independent', x);
fit2 = fittype(y2, 'coefficients', {'b', 'd'}, 'dependent', 'y', 'independent', x);
[bd1, gof1] = fit( x, y, fit1, 'startpoint', guessbd );
[bd2, gof2] = fit( x, y, fit2, 'startpoint', guessbd );
The pair of fits is due to there being two solutions when y is expressed in terms of x, almost identical but differing in sign of the LambertW expression. You would need to check the goodness of fit results to see which was better.
Siehe auch
Kategorien
Mehr zu Interpolation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!