Plotting points across the Sine Curve
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Osita Onyejekwe
am 2 Nov. 2016
Kommentiert: Osita Onyejekwe
am 3 Nov. 2016
I need help with my plot. I have points going across the sine function (zero-crossing). May someone please help me have different symbols for the symbols on the zero line. Say one symbol for the point on the zero-line on your way down. And another symbol for the point on your zero-line on your way up. Thank you! I am not interested in the peaks here. Thanks !
Here is the code. I know you will have to manipulate the code in some way to distinguish the negative direction going onto the zero line and the positive direction going onto the zero line.
x = 1:2000;
X = x;
J = 1;
Fs = 1999;
N = J*Fs;
t = 0: 1/Fs : J;
Fn = 5; % this control the number of cycles/periods
deltaJ = 0.0020;
deltax = 1;
y_sine_25HZ = sin(Fn*2*pi*t);
y = y_sine_25HZ ;
plot(x,y, 'k.')
drvY = gradient(y); % First Derivative Using Gradient
secondDrvY = gradient(drvY); % Second Derivative Using Gradient
indices = [find(secondDrvY(2:end).*secondDrvY(1:end-1)<0) find(abs(secondDrvY)<1e-15)]; % you are dealing with a discrete function here so the second derivative may not be exactly at zero
x_indices = t(indices);
dy=[0 sign(diff(y))]; % First derivative
locdn = find((diff(dy))== 2); % location down (second derivative)
locup = find((diff(dy))==-2);
plot(t,y)
ylim([-1.05 1.05])
hold on
scatter(t(locup)',y(locup)',30,'r','*')
scatter(t(locdn)',y(locdn)',30,'g','d','filled')
% plot(t(zx), y(zx), 'x')
plot(t,y, 'k.', t(indices), zeros(1,length(indices)), 'd', 'MarkerSize', 10, 'MarkerFaceColor', 'r')
plot(t, secondDrvY, 'r')
plot(t, drvY, 'b')
legend('Signal', 'Approximate Zero-Crossings')
hold off
grid
0 Kommentare
Akzeptierte Antwort
Thorsten
am 3 Nov. 2016
plot(t, y)
hold on
ind = find(diff(y>0)<0);
plot(t(ind), y(ind), 'ko')
ind = find(diff(y>0)>0);
plot(t(ind), y(ind), 'ro')
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Clocks and Timers finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!