Is there a way to plot a confusion matrix of the cross validation results?
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Can somebody tell me how to plot a confusion matrix of the crossval result?
CVMdl = crossval(classifier,'HoldOut',0.08);
k=kfoldLoss(CVMdl,'lossFun','classiferror','mode','average')
L = resubLoss(classifier,'LossFun','classiferror')
Accuracy = 1 - k
2 Kommentare
ROHAN JAIN
am 30 Jun. 2020
Bearbeitet: ROHAN JAIN
am 30 Jun. 2020
Hi,
You can plot the confusion matrix easily by using the following function:
confusionchart(testlabels,labels_predicted)
where testlabels are the labels of the test set and labels_predicted refers to the labels that have been predicted by the LDA classifier using predict().
It automatically plots the confusion matrix. Further, you can also store it in a variable and access the values using the dot operator as mentioned below.
cvmat=confusionchart(testlabels,labels_predicted)
cval=cmat.NormalizedValues; % cval is the required matrix
Hope it helps!
Thanks
Antworten (2)
Santhana Raj
am 11 Mai 2017
I am not aware of any method to plot confusion matrix. But usually I calculate the precision and recall from the true positives and true negatives. Some places I also use F-measure. Depending on your application, any of this might be a good measure to evaluate your classification algorithm.
Check wiki for the formulas for these.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Classification finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!