When calculating the standard deviation of arrays of complex numbers c, why is std(c) not equal to std(abs(c))?
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
for example, when both the real and imaginary components are normally distributed:
c = randn(100,1) + i*randn(100,1);
>> std(c)
ans =
1.5367
>> std(abs(c))
ans =
0.7312
Looking at how Matlab calculates these, it appears that the modulus of c is used in both instances. Am I wrong?
Thanks for your help.
0 Kommentare
Antworten (2)
seackone
am 1 Mai 2018
Hi, I also want to calculate the standard deviation of a complex number.. At my research, I found your question. But std(c) and std(abs(c)) is not the same!
For example:
A = [1+1i*1 1+1i*2]
The mean of A is:
mean(A) = 1/2 * (1+1i*1 + 1+1i*2) = 1+1i*1.5
Now you can calculate the standard deviation..
But std(abs(A)) is an other equation:
abs(A) = [1.412 2.2361]
and the mean:
mean(abs(A)) = 1.8251
you got a different matrix and a different mean, so the result of the standard deviation isn't the same. If you want, you can calculate the example to the end and the results are:
std(A) = 0.70..
std(abs(A)) = 0.58..
I hope I could help (maybe not you, because the post is more then a year old..)
0 Kommentare
Siehe auch
Kategorien
Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!