MATLAB - Least squares fitting plot

13 Ansichten (letzte 30 Tage)
Tristen Smith
Tristen Smith am 5 Okt. 2016
Bearbeitet: Tristen Smith am 5 Okt. 2016
if true
% code function [a1,a2]=fitQuadraticNoIntercept(x,y)
x=[10,20,30,40,50,60,70,80];
y=[25,75,380,550,610,1220,830,1450];
sumx^2=sum(x(i)*x(i));
sumx^3=x(i)*(x(i)^2);
sumx^4=x(i)*(x(i)^3);
sum=x(i)*y;
sumx^2y=(x(i)^2)*y;
a1=(((sumxy)*(sumx^4))-((sumx^2y)*(sumx^3)))/(((sumx^2)*sumx^4)-(((sumx^3)^2))
a2=(((sumx^2)*(sumx^2y)-((sumxy)*(sumx^3)))/(((sumx^2)*sumx^4)-(((sumx^3)^2))
end
function [a1,a2]=SmithTristenHW2pb2(x,y)
[a1,a2]=fitQuadraticNoIntercept(x,y);
plot(x, y, 'b*', 'LineWidth', 2, 'MarkerSize', 15);
coeffs = polyfit(x, y, 1);
% Get fitted values
fittedX = linspace(min(x), max(x), 200);
fittedY = polyval(coeffs, fittedX);
% Plot the fitted line
hold on;
plot(fittedX, fittedY, 'r-', 'LineWidth', 3);
xlabel('x')
ylabel('y')
end
end
This is about as far as I got I really need help on how to plot this least squares regression graph...

Antworten (0)

Kategorien

Mehr zu Fit Postprocessing finden Sie in Help Center und File Exchange

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by