MATLAB - Least squares fitting plot
13 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen

if true
% code function [a1,a2]=fitQuadraticNoIntercept(x,y)
x=[10,20,30,40,50,60,70,80];
y=[25,75,380,550,610,1220,830,1450];
sumx^2=sum(x(i)*x(i));
sumx^3=x(i)*(x(i)^2);
sumx^4=x(i)*(x(i)^3);
sum=x(i)*y;
sumx^2y=(x(i)^2)*y;
a1=(((sumxy)*(sumx^4))-((sumx^2y)*(sumx^3)))/(((sumx^2)*sumx^4)-(((sumx^3)^2))
a2=(((sumx^2)*(sumx^2y)-((sumxy)*(sumx^3)))/(((sumx^2)*sumx^4)-(((sumx^3)^2))
end
function [a1,a2]=SmithTristenHW2pb2(x,y)
[a1,a2]=fitQuadraticNoIntercept(x,y);
plot(x, y, 'b*', 'LineWidth', 2, 'MarkerSize', 15);
coeffs = polyfit(x, y, 1);
% Get fitted values
fittedX = linspace(min(x), max(x), 200);
fittedY = polyval(coeffs, fittedX);
% Plot the fitted line
hold on;
plot(fittedX, fittedY, 'r-', 'LineWidth', 3);
xlabel('x')
ylabel('y')
end
end
This is about as far as I got I really need help on how to plot this least squares regression graph...
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Fit Postprocessing finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!