using ode 45 to estimate the derivative
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Bob
am 8 Aug. 2016
Beantwortet: Azzi Abdelmalek
am 8 Aug. 2016
Question: Use ode45 to estimate y'(3), where y is the solution to the initial value problem y" + (1/t)*y = 0 ; y(0) = 0, y'(0) = 2. Note I'm asking for an estimate of the derivative, not the function itself.
Attempted code:
ode = @(t, y) [y(2) ; (1/t)*y(1)];
[t, y] = ode45(ode, [-1, 3], [0, 2]);
y(end, 1);
I do not think this actual estimating the derivative y'(3)?
1 Kommentar
Torsten
am 8 Aug. 2016
1. y''=-1/t*y, thus
ode = @(t, y) [y(2) ; -(1/t)*y(1)];
2. Why do you start integration at t=-1 if your initial conditions are given at t=0 ?
3. Your y(1) is the solution of the ODE y''+1/t*y=0, your y(2) is its derivative ... So to estimate the derivative at t=3, you will have to evaluate y(2) there.
Best wishes
Torsten.
Akzeptierte Antwort
Azzi Abdelmalek
am 8 Aug. 2016
ode=@(t, x) [x(2) ; -(1/t)*x(1)];
[t, x] = ode45(ode, [-1, 3], [0, 2]);
y=x(:,1)
dy=x(:,2)
out=dy(3)
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!