Crack detection on concrete
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi, i have problem in measuring the length and width the crack image. i have follow the code but it only measure straight line (endpoint). I want the measurement by following the crack pattern. Please help me on this.
%load image
path=imgetfile();
originalImage1=imread(path);
imshow(originalImage1);
%image to grayscale
originalImage = rgb2gray(originalImage1);
figure
imshow(originalImage);
%treshold
thresholdValue = 100;
binaryImage = originalImage > thresholdValue;
binaryImage = imfill(binaryImage, 'holes');
hold on;
% maxYValue = ylim;
% line([thresholdValue, thresholdValue], maxYValue, 'Color', 'r');
% annotationText = sprintf('Thresholded at %d gray levels', thresholdValue);
% text(double(thresholdValue + 5), double(0.5 * maxYValue(2)), annotationText, 'FontSize', 10, 'Color', [0 .5 0]);
% text(double(thresholdValue - 70), double(0.94 * maxYValue(2)), 'Background', 'FontSize', 10, 'Color', [0 0 .5]);
% text(double(thresholdValue + 50), double(0.94 * maxYValue(2)), 'Foreground', 'FontSize', 10, 'Color', [0 0 .5]);
figure
imshow(binaryImage);
% bw = bwareaopen(binaryImage,100,8);
bw= bwareaopen(binaryImage, round(0.1*numel(binaryImage)));
figure
imshow(bw)
g=bwmorph(bw,'clean');
figure
imshow(g);
% %labeled image (on hold)
labeledImage = bwlabel(g,4);
figure
imshow(labeledImage, []);
%colored label image
coloredLabels = label2rgb (labeledImage, 'hsv', 'k', 'shuffle');
figure
imshow(coloredLabels);
axis image;
%blobmeasurement
blobMeasurements = regionprops(labeledImage, originalImage, 'all');
numberOfBlobs = size(blobMeasurements, 1);
figure
imshow(originalImage);
axis image; % Make sure image is not artificially stretched because of screen's aspect ratio.
hold on;
boundaries = bwboundaries(binaryImage);
numberOfBoundaries = size(boundaries, 1);
for k = 1 : numberOfBoundaries
thisBoundary = boundaries{k};
plot(thisBoundary(:,2), thisBoundary(:,1), 'g', 'LineWidth', 2);
end
hold off;
% Measure the area
measurements = regionprops(labeledImage, 'Area');
boundaries = bwboundaries(binaryImage);
numberOfBoundaries = size(boundaries, 1);
for blobIndex = 1 : numberOfBoundaries
thisBoundary = boundaries{blobIndex};
x = thisBoundary(:, 2); % x = columns.
y = thisBoundary(:, 1); % y = rows.
% Find which two bounary points are farthest from each other.
maxDistance = -inf;
for k = 1 : length(x)
distances = sqrt( (x(k) - x) .^ 2 + (y(k) - y) .^ 2 );
[thisMaxDistance, indexOfMaxDistance] = max(distances);
if thisMaxDistance > maxDistance
maxDistance = thisMaxDistance;
index1 = k;
index2 = indexOfMaxDistance;
end
end
% Find the midpoint of the line.
xMidPoint = mean([x(index1), x(index2)]);
yMidPoint = mean([y(index1), y(index2)]);
longSlope = (y(index1) - y(index2)) / (x(index1) - x(index2))
perpendicularSlope = -1/longSlope
% Use point slope formula (y-ym) = slope * (x - xm) to get points
y1 = perpendicularSlope * (1 - xMidPoint) + yMidPoint;
y2 = perpendicularSlope * (columns - xMidPoint) + yMidPoint;
% Get the profile perpendicular to the midpoint so we can find out when if first enters and last leaves the object.
[cx,cy,c] = improfile(binaryImage,[1, columns], [y1, y2], 1000);
% Get rid of NAN's that occur when the line's endpoints go above or below the image.
c(isnan(c)) = 0;
firstIndex = find(c, 1, 'first');
lastIndex = find(c, 1, 'last');
% Compute the distance of that perpendicular width.
perpendicularWidth = sqrt( (cx(firstIndex) - cx(lastIndex)) .^ 2 + (cy(firstIndex) - cy(lastIndex)) .^ 2 );
% Get the average perpendicular width. This will approximately be the area divided by the longest length.
averageWidth = measurements(blobIndex).Area / maxDistance;
% Plot the boundaries, line, and midpoints over the two images.
% Plot the boundary over the gray scale image
subplot(2, 2, 3);
plot(x, y, 'y-', 'LineWidth', 3);
% For this blob, put a line between the points farthest away from each other.
line([x(index1), x(index2)], [y(index1), y(index2)], 'Color', 'r', 'LineWidth', 3);
plot(xMidPoint, yMidPoint, 'r*', 'MarkerSize', 15, 'LineWidth', 2);
% Plot perpendicular line. Make it green across the whole image but magenta inside the blob.
line([1, columns], [y1, y2], 'Color', 'g', 'LineWidth', 3);
line([cx(firstIndex), cx(lastIndex)], [cy(firstIndex), cy(lastIndex)], 'Color', 'm', 'LineWidth', 3);
% Plot the boundary over the binary image
subplot(2, 2, 4);
plot(x, y, 'y-', 'LineWidth', 3);
% For this blob, put a line between the points farthest away from each other.
line([x(index1), x(index2)], [y(index1), y(index2)], 'Color', 'r', 'LineWidth', 3);
plot(xMidPoint, yMidPoint, 'r*', 'MarkerSize', 15, 'LineWidth', 2);
% Plot perpendicular line. Make it green across the whole image but magenta inside the blob.
line([1, columns], [y1, y2], 'Color', 'g', 'LineWidth', 3);
line([cx(firstIndex), cx(lastIndex)], [cy(firstIndex), cy(lastIndex)], 'Color', 'm', 'LineWidth', 3);
message = sprintf('The longest line is red.\nPerpendicular to that, at the midpoint, is green.\nMax distance for blob #%d = %.2f\nPerpendicular distance at midpoint = %.2f\nAverage perpendicular width = %.2f (approximately\nArea = %d', ...
blobIndex, maxDistance, perpendicularWidth, averageWidth, measurements(blobIndex).Area);
fprintf('%s\n', message);
uiwait(helpdlg(message));
end
hold off;
1 Kommentar
KAMOOSH BABA SHAIK
am 8 Jun. 2021
% Use point slope formula (y-ym) = slope * (x - xm) to get points
y1 = perpendicularSlope * (1 - xMidPoint) + yMidPoint;
y2 = perpendicularSlope * (columns - xMidPoint) + yMidPoint;
in y2 what i can replace to get the answer
in matlab shows like this,
Unrecognized function or variable 'columns'.
Error in lengthwidth (line 90)
y2 = perpendicularSlope * (columns - xMidPoint) + yMidPoint;
Antworten (2)
Preetham Manjunatha
am 19 Dez. 2024 um 1:20
Here is the MATLAB code to calculate/estimate the crack area, width and length. In addition, this package assumes the crack is segmented either using morphological method or multiscale gradient-based or deep learning semantic segmentation methods. This package estimates the crack area, width and length (pixel scale can be provided to estimate these physical quantities).
0 Kommentare
Siehe auch
Kategorien
Mehr zu Image Processing and Computer Vision finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!