solving differential equation for diffrent intial condition
11 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
samee baig
am 14 Jul. 2016
Kommentiert: samee baig
am 14 Jul. 2016
I am trying to solve differential equation for different initial conditions and plotting the result for each initial condition.i need help on writing a code using a loop to do the same and plotting the result against each initial condition. my current code is as below function xdot=fifteenstate2(t,x)
T=1;
v(1) =-x(1)-x(2)*x(3)-x(3)*x(4)-x(5)*x(6)-x(7)*x(8)-x(9)*x(10)-x(11)*x(12)-x(13)*x(14);
v(2) = -x(2);
v(3) =-x(5);
v(4) =-x(5)*x(6)-x(7);
v(5) =-x(9);
v(6) =-x(11);
v(7) =-x(13);
v(8) =x(3);
v(9) =x(6);
v(10) =x(8);
v(11) =x(10);
v(12) =x(12);
v(13) =x(14);
v(14) =x(4);
v=[v(1);v(2);v(3);v(4);v(5);v(6);v(7);v(8);v(9);v(10);v(11);v(12);v(13);v(14)];
%uu=[1;1;1;1;1;1;1];
d(1)=3.54491*sign(v(8))*sqrt(abs(v(8))/T);
d(2)=3.54491*sign(v(9))*sqrt(abs(v(9))/T);
d(3)=3.54491*sign(v(10))*sqrt(abs(v(10))/T);
d(4)=3.54491*sign(v(11))*sqrt(abs(v(11))/T);
d(5)=3.54491*sign(v(12))*sqrt(abs(v(12))/T);
d(6)=3.54491*sign(v(13))*sqrt(abs(v(13))/T);
d(7)=3.54491*sign(v(14))*sqrt(abs(v(14))/T);
d=[d(1);d(2);d(3);d(4);d(5);d(6);d(7)];
y(1)=sin((2*pi*t)/T); y(2)=cos((2*pi*t)/T);
y=[y(1);y(2)];
uu(1)=v(1)+d(1)*y(2)+d(2)*y(2)-d(3)*y(2)-d(4)*y(1)-d(5)*y(1)+d(6)*y(2);%+d(7)*y(1)+d(1)*d(7)*y(2)*y(2);
uu(2)=v(2)+d(1)*y(1);%-d(1)*d(7)*y(1)*y(2);
uu(3)=v(3)+d(2)*y(1);
uu(4)=v(4)+d(3)*y(1);
uu(5)=v(5)+d(4)*y(2);
uu(6)=v(6)+d(5)*y(2);
uu(7)=v(7)+d(6)*y(1);
uu=[uu(1);uu(2);uu(3);uu(4);uu(5);uu(6);uu(7)];
xdot(1)=uu(1); xdot(2)=uu(2); xdot(3)=x(2)*uu(1); xdot(4)=x(3)*uu(1); xdot(5)=uu(3); xdot(6)=x(5)*uu(1); xdot(7)=uu(4); xdot(8)=x(7)*uu(1); xdot(9)=uu(5); xdot(10)=x(9)*uu(1); xdot(11)=uu(6); xdot(12)=x(11)*uu(1); xdot(13)=uu(7); xdot(14)=x(13)*uu(1); xdot=xdot';
clear all close all clc
Tspan =linspace(0,100,500);
IC=[1;-3;2;-2;3;-4;1;-2;5;3;-2;-2;2;-3]; %options = odeset('RelTol',1e-2,'AbsTol',[1e-2 1e-2 1e-2 1e-2 1e-2 1e-2]); [T,Y] = ode45(@fifteenstate2, Tspan,IC)
x1 = Y(:,1); x2 = Y(:,2); x3 = Y(:,3); x4 = Y(:,4); x5 = Y(:,5); x6 = Y(:,6); x7 = Y(:,7); x8 = Y(:,8); x9 = Y(:,9); x10 = Y(:,10); x11 = Y(:,11); x12 = Y(:,12); x13 = Y(:,13); x14 = Y(:,14);
figure(1) plot(T,x1,T,x3,T,x4,T,x6,T,x8,T,x10,T,x12,T,x14,'linewidth',2) legend('x1','x3','x4','x6','x8','x10','x12','x14',8); xlabel('t(s)') ylabel('x_1,x_3,x_4,x_6,x_8,x_10,x_12,x_14') grid on
figure(2) plot(T,x2,T,x5,T,x7,T,x9,T,x11,T,x13,'linewidth',2) legend('x2','x5','x7','x9','x11','x13',6); xlabel('t(s)') ylabel('x_2,x_5,x_7,x_9,x_11,x_13') grid on
2 Kommentare
Akzeptierte Antwort
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!