how to make inverse fourrier transform in the correct way?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
as you can see in my code, i made a fft of a simple signal but when i try to reconstruct it using ifft i can only see it in the ABS way, meaning that the ifft that i made is incorrect, please let me know what i did wrong
clear all
close all
clc
Ts=0.001;
t=0:Ts:10;
omega1=2*pi*15;
omega2=2*pi*40;
x=sin(omega1*t)+sin(omega2*t);
figure(1)
subplot(4,1,1)
plot(t,x)
grid on
xlim([0 0.1*pi])
title('\bf x=sin(\omega_1t)+sin(\omega_2t)')
xlabel('t[sec]')
ylabel('x(t)')
X_dft=fftshift(fft(x))/length(x);
Fs=1/Ts;
f=linspace(-Fs/2,Fs/2,length(t));
subplot(4,1,2)
plot(f,abs(X_dft))
grid on
xlim([-60 60])
title('\bf |Fourrier(x)|')
xlabel('f[Hz]')
ylabel('|X(f)|')
subplot(4,1,3)
X_phase=angle(X_dft);
plot(f,X_phase)
grid on
xlim([-60 60])
title('\bf Phase(x)')
xlabel('f[Hz]')
ylabel('Angle (\theta) [Radians]')
subplot(4,1,4)
x_ifft=abs(ifft(X_dft))*length(x);
plot(t,x_ifft)
grid on
xlim([0 0.1*pi])
title('\bf |x=sin(\omega_1t)+sin(\omega_2t)|')
xlabel('t[sec]')
ylabel('|x(t)|')
5 Kommentare
Adam
am 7 Jul. 2016
That probably comes from doing an fftshift - this is un-necessary and indeed gives incorrect results when applying an ifft to its result.
Akzeptierte Antwort
Thorsten
am 7 Jul. 2016
Simple as this:
u = fft(x);
x2 = ifft(u);
The difference is within the tolerance of machine precision:
max(abs(x - x2))
ans =
3.10862446895044e-15
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Fourier Analysis and Filtering finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!