Area under a curve
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi,
I want to calculate the area of this curve. y = [0 1 3 -1 -2 -3 -1 0];
I know a portion of the curve has negative value, so my solution is make all the y values absolute. But then the area of absolute y will be higher. Can anyone help me?

Thanks.
0 Kommentare
Antworten (3)
Star Strider
am 4 Jul. 2016
The problem wasn’t immediately obvious to me. You need to find the zero-crossing, and then add the two separate areas:
y = [0 1 3 -1 -2 -3 -1 0];
x = 1:length(y);
zci = @(v) find(v(:).*circshift(v(:), [-1 0]) < 0); % Returns Approximate Zero-Crossing Indices Of Argument Vector
yzxi = zci(y); % Zero-Crossing Index
x0 = interp1(y(yzxi:yzxi+1), x(yzxi:yzxi+1), 0); % Interpolate To Find Zero-Crossing
AUC = polyarea([x(1:yzxi) x0], [y(1:yzxi) 0]) + polyarea([x0 x(yzxi+1:end)], [0 y(yzxi+1:end)]);
INT = trapz(x, abs(y)) % Compare (Optional)
AUC =
10.2500
INT =
11.0000
I used the polyarea function rather than the integration functions. If you have a more complicated function, this will work as well, but you will have to make the appropriate changes to the code. (I included the trapz function integration of the absolute value for comparison.)
2 Kommentare
Star Strider
am 5 Jul. 2016
Yes.
You simply have to find each one, calculate the zero-crossing, and do polyarea for each segment.
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differentiation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!