covariance of weighted multidimensional samples
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have a multidimensional weighted sample set, e.g.
D=2; % dimension
N=100; % number of samples
x=randn(D,N); % samples
w=ones(1,N)/N; % corresponding weights
I would like to find the weighted covariance of this sample set. To obtain this, I first computed the weighted mean using the formula \mu = \sum_{i=1}^{N} w_{i} x_{i} as
mu=sum(bsxfun(@times,w,x),2);
Then I need to find the covariance according to the formula \Sigma = \sum_{i=1}^{N} w_{i} (x_{i} - \mu)*(x_{i} - \mu)'. My current code is this:
ct=bsxfun(@minus,particles,mu);
P=zeros(Dx,Dx,N);
for n=1:N,
P(:,:,n)=w(n)*(ct(:,n)*ct(:,n)');
end
Sigma=sum(P,3);
What is the computationally best coding procedure to calculate this covariance? Suggestions appreciated, thanks.
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Logical finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!