Is there any one who can help me how to sum the following summation expression? I tried but it said to many inputs. Thank you for your help!

1 Ansicht (letzte 30 Tage)
U(x,y) = [.ϕ1(x) + β.ϕ2(x)].ψ(y), the summation is k : 0 --> infinity.
Where ψ(y)=sin(kπy), b=(1/(2ϵ)^2 +(kπ)^2 ),
ϕ1(x)=e^(x/(2ϵ)) (sinh(b.(1-x)))/(sinh(b)),
ϕ2(x)=e^((x-1)/(2ϵ)).(sinh(b.x)/(sinh(b)),
=2/kπ (cos(0.45kπ) ),
β=.(b.e^(1/(2ϵ))/(sinh(b))(1/2ϵ+b.(cosh(b)/sinh(b)))
  3 Kommentare
Temesgen Gelaw
Temesgen Gelaw am 11 Jun. 2016
Bearbeitet: Temesgen Gelaw am 11 Jun. 2016
Dear Geoff
First, I write like this
syms x y k v
Hk = sinh(k*pi*y);
bk = sqrt(1/(2*v).^2 + (k*pi).^2);
Qlk = exp(x/(2*v))*sinh(bk*(1-x))/sinh(bk);
Q2k = exp((x-1)/(2*v))*sinh(bk*x)/sinh(bk);
Ck = 2*(cos(0.45*k*pi)-cos(0.55*k*pi))/(k*pi);
Bk = Ck*((bk*exp(1/(2*v))/sinh(bk)))/(1/(2*v) + bk*cosh(bk)/sinh(bk));
U = (Ck*Qlk + Bk*Q2k)*Hk;
u = symsum(U, k, 1, Inf);
Then I got this
u = -sum((exp(pi*k*y)/2 - exp(-pi*k*y)/2)*((exp(x/(2*v))*(exp((1/(4*v^2) + pi^2*k^2)^(1/2)*(x - 1))/2 - exp(-(1/(4*v^2) + pi^2*k^2)^(1/2)*(x - 1))/2)*(exp(-(pi*k*9*i)/20) + exp((pi*k*9*i)/20) - exp(-(pi*k*11*i)/20) - exp((pi*k*11*i)/20)))/(pi*k*(exp((1/(4*v^2) + pi^2*k^2)^(1/2))/2 - exp(-(1/(4*v^2) + pi^2*k^2)^(1/2))/2)) - (exp((x - 1)/(2*v))*exp(1/(2*v))*(exp(x*(1/(4*v^2) + pi^2*k^2)^(1/2))/2 - exp(-x*(1/(4*v^2) + pi^2*k^2)^(1/2))/2)*(1/(4*v^2) + pi^2*k^2)^(1/2)*(exp(-(pi*k*9*i)/20) + exp((pi*k*9*i)/20) - exp(-(pi*k*11*i)/20) - exp((pi*k*11*i)/20)))/(pi*k*(exp((1/(4*v^2) + pi^2*k^2)^(1/2))/2 - exp(-(1/(4*v^2) + pi^2*k^2)^(1/2))/2)^2*(1/(2*v) + ((1/(4*v^2) + pi^2*k^2)^(1/2)*(exp((1/(4*v^2) + pi^2*k^2)^(1/2))/2 + exp(-(1/(4*v^2) + pi^2*k^2)^(1/2))/2))/(exp((1/(4*v^2) + pi^2*k^2)^(1/2))/2 - exp(-(1/(4*v^2) + pi^2*k^2)^(1/2))/2)))), k == 1..Inf)
And then I tried as below
u = -sum((exp(pi*k*y)/2 - exp(-pi*k*y)/2)*((exp(x/(2*v))*(exp((1/(4*v^2) + pi^2*k^2)^(1/2)*(x - 1))/2 - exp(-(1/(4*v^2) + pi^2*k^2)^(1/2)*(x - 1))/2)*(exp(-(pi*k*9*i)/20) + exp((pi*k*9*i)/20) - exp(-(pi*k*11*i)/20) - exp((pi*k*11*i)/20)))/(pi*k*(exp((1/(4*v^2) + pi^2*k^2)^(1/2))/2 - exp(-(1/(4*v^2) + pi^2*k^2)^(1/2))/2)) - (exp((x - 1)/(2*v))*exp(1/(2*v))*(exp(x*(1/(4*v^2) + pi^2*k^2)^(1/2))/2 - exp(-x*(1/(4*v^2) + pi^2*k^2)^(1/2))/2)*(1/(4*v^2) + pi^2*k^2)^(1/2)*(exp(-(pi*k*9*i)/20) + exp((pi*k*9*i)/20) - exp(-(pi*k*11*i)/20) - exp((pi*k*11*i)/20)))/(pi*k*(exp((1/(4*v^2) + pi^2*k^2)^(1/2))/2 - exp(-(1/(4*v^2) + pi^2*k^2)^(1/2))/2)^2*(1/(2*v) + ((1/(4*v^2) + pi^2*k^2)^(1/2)*(exp((1/(4*v^2) + pi^2*k^2)^(1/2))/2 + exp(-(1/(4*v^2) + pi^2*k^2)^(1/2))/2))/(exp((1/(4*v^2) + pi^2*k^2)^(1/2))/2 - exp(-(1/(4*v^2) + pi^2*k^2)^(1/2))/2)))), k,1,Inf);
But the answer is Too many input arguments.
Image Analyst
Image Analyst am 11 Jun. 2016
I don't have the symbolic Toolbox so I can't help you other than to suggest this link: read this
But you must have overlooked Geoff's suggestion " the full error message" since I don't see the error message. You need to give ALL THE RED TEXT including lines numbers, line of code, etc.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Roger Stafford
Roger Stafford am 11 Jun. 2016
The first result with ‘symsum’ very likely indicates that ‘symsum’ is unable to compute this particular infinite sum.
The second result indicating too many input arguments refers to the ‘sum’ function. See:
http://www.mathworks.com/help/matlab/ref/sum.html
The ‘sum’ function is not symbolic but is numeric instead, and the arguments you gave, namely k,1,Inf, are inappropriate. You need to make ‘k’ a vector and unfortunately it has to be of finite length so you can only approximate an infinite sum with this method.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by