Lease Square Minimization, lsqnonlin

1 Ansicht (letzte 30 Tage)
Rafa Z
Rafa Z am 26 Mai 2016
Kommentiert: Rafa Z am 3 Sep. 2018
I am using lsqnonlin for LSM problem. I have tried both ways trust region reflective and levenberg marquart (can be changed from options). They both provided the same result. What are the difference in these methods? PS: I have 4 equations with 3 unknowns.

Antworten (1)

Svein Olav Hegerland
Svein Olav Hegerland am 18 Apr. 2018
Hi! I know it a long time ago you posted this post, but can I have a look at your code :)? I am trilaterating using the lsqnonlin solver and would like to compare my approach to yours.
  3 Kommentare
Hussein Kwasme
Hussein Kwasme am 16 Jul. 2018
Hello, Just found this discussion, I'm trying to do trilateration of a point in a 2-D plane having 4 reference points (known positions and distances to my unknown point).
Is it possible to have the code? I can solve my system with SOLVE command if I have only 3 reference points (shown in picture), but I get no solution when I add the 4th reference point.
if true
BS=3
syms x1 y1 m
% assume(x1,'real')
% assume(y1,'real')
for i = 1:2:BS
syms x1 y1
%solving the equations
m(i,:) = (((x1-anchorLoc(2,1)).^2 + (y1-anchorLoc(2,2)).^2 - (distanceNoisy(2))^2)) - ...
(((x1-anchorLoc(i,1)).^2 + (y1-anchorLoc(i,2)).^2 - (distanceNoisy(i))^2));
end
syms x1 y1
[X1,Y1] = solve(m,x1,y1);
beacon_est(1,1)=double(X1);
beacon_est(1,2)=double(Y1);
end
Rafa Z
Rafa Z am 3 Sep. 2018
shoot me a message to rafaelsantos90@mail.ru; will share scripts I have.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by