How to calculate correlation p-value?

82 Ansichten (letzte 30 Tage)
Ritankar Das
Ritankar Das am 26 Mai 2016
I have a correlation matrix and have performed some filtering on it. Now I want to calculate the p-value of the filtered correlation matrix. Can anyone help we with the code. [R,P]=corrcoef(A) returns both the correlation matrix as well as the p-value matrix, but I already have the correlation matrix, and just want to calculate the p-value matrix.
Thank you in advance. Ritankar.

Antworten (3)

Gregory Pelletier
Gregory Pelletier am 24 Jan. 2024
Here is how to calculate the p-values the same way that matlab does in corrcoef if you only know the correlation coefficient matrix R and the number of samples N (see p_check below for the manual calculation of the p-value compared with p from corrcoef):
load hospital
X = [hospital.Weight hospital.BloodPressure];
[R, p] = corrcoef(X)
N = size(X,1);
t = sqrt(N-2).*R./sqrt(1-R.^2);
s = tcdf(t,N-2);
p_check = 2 * min(s,1-s)
% R =
% 1.0000e+00 1.5579e-01 2.2269e-01
% 1.5579e-01 1.0000e+00 5.1184e-01
% 2.2269e-01 5.1184e-01 1.0000e+00
% p =
% 1.0000e+00 1.2168e-01 2.5953e-02
% 1.2168e-01 1.0000e+00 5.2460e-08
% 2.5953e-02 5.2460e-08 1.0000e+00
% p_check =
% 0 1.2168e-01 2.5953e-02
% 1.2168e-01 0 5.2460e-08
% 2.5953e-02 5.2460e-08 0

the cyclist
the cyclist am 26 Mai 2016
You cannot calculate a P-value from only a correlation matrix. You need the underlying data. The reason why is pretty easy to understand ... The correlation matrix could have come from a dataset with maybe N=10 measurements, or perhaps N=100000 measurements. These will (almost certainly) have different P-values.
  1 Kommentar
Gregory Pelletier
Gregory Pelletier am 24 Jan. 2024
Here is how to calculate the p-values the same way that matlab does in corrcoef if you only know the correlation coefficient matrix R and the number of samples N (see p_check below for the manual calculation of the p-value compared with p from corrcoef):
load hospital
X = [hospital.Weight hospital.BloodPressure];
[R, p] = corrcoef(X)
N = size(X,1);
t = sqrt(N-2).*R./sqrt(1-R.^2);
s = tcdf(t,N-2);
p_check = 2 * min(s,1-s)
% R =
% 1.0000e+00 1.5579e-01 2.2269e-01
% 1.5579e-01 1.0000e+00 5.1184e-01
% 2.2269e-01 5.1184e-01 1.0000e+00
% p =
% 1.0000e+00 1.2168e-01 2.5953e-02
% 1.2168e-01 1.0000e+00 5.2460e-08
% 2.5953e-02 5.2460e-08 1.0000e+00
% p_check =
% 0 1.2168e-01 2.5953e-02
% 1.2168e-01 0 5.2460e-08
% 2.5953e-02 5.2460e-08 0

Melden Sie sich an, um zu kommentieren.


Anil Kamat
Anil Kamat am 30 Mai 2021
Bearbeitet: Anil Kamat am 30 Mai 2021
Lets say
N --> no.of the observations / data points
r --> assumed corr.coef
t = r*sqrt((N-2)/(1-r^2)); % find t-statistics
p1 = 1 - tcdf(t,(N-2)) % find pvalue using Student's t cumulative distribution function for one sample test.
https://www.mathworks.com/help/stats/tcdf.html
  1 Kommentar
the cyclist
the cyclist am 1 Jun. 2021
Bearbeitet: the cyclist am 1 Jun. 2021
Can you help me understand that your formula is correct? Here is a correlation coefficient calculated from a randome dataset, and then your calculation. (I modified your formula only to make meaningful variable names.)
rng default
N = 1000;
x = randn(N,2);
[correlationMatrix,pMatrix] = corrcoef(x);
pValueFromOriginalData = pMatrix(1,2);
correlationCoefficient = correlationMatrix(1,2);
t = correlationCoefficient*sqrt((N-2)/(1-correlationCoefficient^2)); % find t-statistics
p_from_anil = 1 - tcdf(t,(N-2)); % find pvalue using Student's t cumulative distribution function for one sample test
sprintf('p-value from original data = %7.4f',pValueFromOriginalData)
ans = 'p-value from original data = 0.7695'
sprintf('p-value from Anil = %7.4f',p_from_anil)
ans = 'p-value from Anil = 0.6153'
They give different results.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Descriptive Statistics finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by