I want to know what does it mean by the term including "laplace" word in Laplace Transform
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Esraa Abdelkhaleq
am 7 Mai 2016
Beantwortet: syed ali hasan kibria
am 15 Dez. 2020
When I tried to solve an eqn analytically using Laplace Transform, the soln included the term laplace(qpl(t), t, s).
I do not know what does this mean?
The commands I entered as following:
>> clear E
>> syms fplc Rc Nc0 Kgr fplh Rh Nh0 Kel real
>> syms qpl(t) s
>> dqpl(t) = diff(qpl(t),t);
>> dqpl(t)= fplc*Rc*Nc0*exp(Kgr*t)+fplh*Rh*Nh0-Kel*qpl(t);
>> L(t)=laplace(dqpl(t),t,s)
L(t) =
(Nh0*Rh*fplh)/s - Kel*laplace(qpl(t), t, s) - (Nc0*Rc*fplc)/(Kgr - s)
Akzeptierte Antwort
Star Strider
am 7 Mai 2016
The Symbolic Math Toolbox denotes ‘laplace(qpl(t), t, s)’ as the Laplace transform of the ‘qpl(t)’ function. If you want to denote it in a more traditional form, use the subs function:
L(s) = laplace(dqpl(t),t,s)
L(s) =
(Nh0*Rh*fplh)/s - Kel*laplace(qpl(t), t, s) - (Nc0*Rc*fplc)/(Kgr - s)
L(s) = subs(L(s), {laplace(qpl(t), t, s)}, {QPL(s)})
L(s) =
(Nh0*Rh*fplh)/s - Kel*QPL(s) - (Nc0*Rc*fplc)/(Kgr - s)
This replaces ‘laplace(qpl(t), t, s)’ with ‘QPL(s)’. It is usually good to do this, expecially if you want to simplify your equation or solve for ‘QPL(s)’ later in your code, for example to calculate a transfer function.
8 Kommentare
Star Strider
am 9 Mai 2016
For whatever reason, the solve function refuses to solve ‘Laplace_Eqn’ for ‘QPL’ in the commented-out lines.
So, I decided to just directly solve it using the dsolve function:
syms fplc Rc Nc0 Kgr fplh Rh Nh0 Kel qpl(t) s QPL(s) qpl0 real
dqpl(t) = diff(qpl(t),t);
Eqn = dqpl(t) == fplc*Rc*Nc0*exp(Kgr*t)+fplh*Rh*Nh0-Kel*qpl(t);
qpl = dsolve(Eqn, qpl(0) == qpl0);
qpl = simplify(qpl, 'steps', 10)
% Laplace_Eqn = laplace(Eqn);
%
% Laplace_Eqn = subs(Laplace_Eqn, {laplace(qpl(t), t, s)}, {QPL(s)});
%
% Soln = solve(Laplace_Eqn, QPL, 'IgnoreAnalyticConstraints',true, 'IgnoreProperties',true);
The integrated (and simplified) differential equation:
qpl =
(Kel*Nh0*Rh*fplh + Kgr*Nh0*Rh*fplh + Kel*Nc0*Rc*fplc*exp(Kgr*t))/(Kel*(Kel + Kgr)) - exp(-Kel*t)*((Nh0*Rh*fplh)/Kel - qpl0 + (Nc0*Rc*fplc)/(Kel + Kgr))
Weitere Antworten (1)
syed ali hasan kibria
am 15 Dez. 2020
y¨(t) + 2 ˙y(t) + 10y(t) = 20 cos(6t) y(0) = 1 y˙(0) = 5
0 Kommentare
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!