Why we use Transfer Function to represent/describe a Dynamic Model?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Why we use Transfer Function to represent/describe a Dynamic Model?
%%Parameters
m1 = 2500; % Sprung Mass (kg)
m2 = 320; % Unsprung Mass (kg)
k1 = 80000; % Suspension Stiffness (N/m)
k2 = 500000; % Wheel and Tire Stiffness (N/m)
b1 = 350; % Suspension Damping Coefficient (N*s/m)
b2 = 15020; % Wheel and Tire Damping Coefficient (N*s/m)
%%Dynamic Model
% Displacement of Mass 1, G1(s) = X1(s)/W(s)
num1 = [(0) (0) (b1*b2) (b1*k2+b2*k1) (k1*k2)]; % Output X1(s)
den1 = [(m1*m2) (m1*b1+m1*b2+m2*b1) (m1*k1+m1*k2+m2*k1+b1*b2) (b1*k2+k1*b2) (k1*k2)]; % Input W(s)
G1 = tf(num1,den1);
% Displacement of Mass 2, G2(s) = X2(s)/W(s)
num2 = [(0) (m1*b2) (m1*k2+b1*b2) (b1*k2+b2*k1) (k1*k2)]; % Output X2(s)
den2 = [(m1*m2) (m1*b1+m1*b2+m2*b1) (m1*k1+m1*k2+m2*k1+b1*b2) (b1*k2+k1*b2) (k1*k2)]; % Input W(s)
G2 = tf(num2,den2);
0 Kommentare
Antworten (1)
Siehe auch
Kategorien
Mehr zu Chassis Systems finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!