Plot multi-class decision boundaries SVM?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Does anyone know how to plot Plot multi-class decision boundaries for SVM?
I'm doing Handwritten Digit classification so have 10-classes w/256-predictors and using "fitcecoc" and "predict" but having problems plotting the mixed-model, decision boundaries.
Any suggestions?
predictorExtractionFcn = @(x) array2table(x, 'VariableNames', predictorNames); svmPredictFcn = @(x) predict(classificationSVM, x); trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x));
predictorNames = {'column_1', 'column_2', 'column_3', 'column_4', 'column_5', 'column_6', 'column_7', 'column_8', 'column_9', 'column_10', 'column_11', 'column_12', 'column_13', 'column_14', 'column_15', 'column_16', 'column_17', 'column_18', 'column_19', 'column_20', 'column_21', 'column_22', 'column_23', 'column_24', 'column_25', 'column_26', 'column_27', 'column_28', 'column_29', 'column_30', 'column_31', 'column_32', 'column_33', 'column_34', 'column_35', 'column_36', 'column_37', 'column_38', 'column_39', 'column_40', 'column_41', 'column_42', 'column_43', 'column_44', 'column_45', 'column_46', 'column_47', 'column_48', 'column_49', 'column_50', 'column_51', 'column_52', 'column_53', 'column_54', 'column_55', 'column_56', 'column_57', 'column_58', 'column_59', 'column_60', 'column_61', 'column_62', 'column_63', 'column_64', 'column_65', 'column_66', 'column_67', 'column_68', 'column_69', 'column_70', 'column_71', 'column_72', 'column_73', 'column_74', 'column_75', 'column_76', 'column_77', 'column_78', 'column_79', 'column_80', 'column_81', 'column_82', 'column_83', 'column_84', 'column_85', 'column_86', 'column_87', 'column_88', 'column_89', 'column_90', 'column_91', 'column_92', 'column_93', 'column_94', 'column_95', 'column_96', 'column_97', 'column_98', 'column_99', 'column_100', 'column_101', 'column_102', 'column_103', 'column_104', 'column_105', 'column_106', 'column_107', 'column_108', 'column_109', 'column_110', 'column_111', 'column_112', 'column_113', 'column_114', 'column_115', 'column_116', 'column_117', 'column_118', 'column_119', 'column_120', 'column_121', 'column_122', 'column_123', 'column_124', 'column_125', 'column_126', 'column_127', 'column_128', 'column_129', 'column_130', 'column_131', 'column_132', 'column_133', 'column_134', 'column_135', 'column_136', 'column_137', 'column_138', 'column_139', 'column_140', 'column_141', 'column_142', 'column_143', 'column_144', 'column_145', 'column_146', 'column_147', 'column_148', 'column_149', 'column_150', 'column_151', 'column_152', 'column_153', 'column_154', 'column_155', 'column_156', 'column_157', 'column_158', 'column_159', 'column_160', 'column_161', 'column_162', 'column_163', 'column_164', 'column_165', 'column_166', 'column_167', 'column_168', 'column_169', 'column_170', 'column_171', 'column_172', 'column_173', 'column_174', 'column_175', 'column_176', 'column_177', 'column_178', 'column_179', 'column_180', 'column_181', 'column_182', 'column_183', 'column_184', 'column_185', 'column_186', 'column_187', 'column_188', 'column_189', 'column_190', 'column_191', 'column_192', 'column_193', 'column_194', 'column_195', 'column_196', 'column_197', 'column_198', 'column_199', 'column_200', 'column_201', 'column_202', 'column_203', 'column_204', 'column_205', 'column_206', 'column_207', 'column_208', 'column_209', 'column_210', 'column_211', 'column_212', 'column_213', 'column_214', 'column_215', 'column_216', 'column_217', 'column_218', 'column_219', 'column_220', 'column_221', 'column_222', 'column_223', 'column_224', 'column_225', 'column_226', 'column_227', 'column_228', 'column_229', 'column_230', 'column_231', 'column_232', 'column_233', 'column_234', 'column_235', 'column_236', 'column_237', 'column_238', 'column_239', 'column_240', 'column_241', 'column_242', 'column_243', 'column_244', 'column_245', 'column_246', 'column_247', 'column_248', 'column_249', 'column_250', 'column_251', 'column_252', 'column_253', 'column_254', 'column_255', 'column_256'}; predictors = inputTable(:, predictorNames); response = inputTable.column_257;
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Classification finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!